摘要:6.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角, (2)转化为线面垂直.
网址:http://m.1010jiajiao.com/timu3_id_517873[举报]
(Ⅰ)证明CD与平面PAD不垂直;
(Ⅱ)证明平面PAB⊥平面ABCD;
(Ⅲ)如果CD=AD+BC,二面角P-BC-A等于60°,求二面角P-CD-A的大小.
(I)求证:EF⊥平面BCE;
(II)设线段CD的中点为P,在直线AE上是否存在一点M,使得PM∥平面BCE?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角F-BD-A的余弦值.
(2013•盐城三模)在平面直角坐标系xOy中,椭圆C:
+
=1.
(1)若椭圆C的焦点在x轴上,求实数m的取值范围;
(2)若m=6,
①P是椭圆C上的动点,M点的坐标为(1,0),求PM的最小值及对应的点P的坐标;
②过椭圆C的右焦点F 作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明:
是定值,并求出这个定值.
查看习题详情和答案>>
| x2 |
| m |
| y2 |
| 8-m |
(1)若椭圆C的焦点在x轴上,求实数m的取值范围;
(2)若m=6,
①P是椭圆C上的动点,M点的坐标为(1,0),求PM的最小值及对应的点P的坐标;
②过椭圆C的右焦点F 作与坐标轴不垂直的直线,交椭圆C于A,B两点,线段AB的垂直平分线l交x轴于点N,证明:
| AB |
| FN |