摘要:已知为正实数,数列由,确定. (Ⅰ)对于一切的,证明:, (Ⅱ)若是满足的正实数,且,证明:.
网址:http://m.1010jiajiao.com/timu3_id_517384[举报]
(本小题满分12分)
已知数列
和
满足:
,
其中
为实数,
为正整数.
(1)对任意实数
,证明数列
不是等比数列;
(2)试判断数列
是否为等比数列,并证明你的结论;
(3)设
,
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
查看习题详情和答案>>
(本小题满分12分)
已知数列
和
满足:
,
其中
为实数,
为正整数.
(1)对任意实数
,证明数列
不是等比数列;
(2)试判断数列
是否为等比数列,并证明你的结论;
(3)设
,
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
(本小题满分12分)
已知函数![]()
(1)若函数
在定义域内单调递增,求
的取值范围;
(2)若
且关于x的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(3)设各项为正的数列
满足:
求证:![]()