摘要:22.已知数列中.且点在直线上. (1)求数列的通项公式, (2)若函数求函数的最小值, (3)设表示数列的前项和.试问:是否存在关于的整式.使得 对于一切不小于2的自然数恒成立?若存在.写出的解析式.并加以证明,若不存在.试说明理由.
网址:http://m.1010jiajiao.com/timu3_id_516897[举报]
(本小题满分14分)
已知函数
,在定义域内有且只有一个零点,存在
, 使得不等式
成立. 若
,
是数列
的前
项和.
(I)求数列
的通项公式;
(II)设各项均不为零的数列
中,所有满足
的正整数
的个数称为这个数列
的变号数,令
(n为正整数),求数列
的变号数;
(Ⅲ)设
(
且
),使不等式
恒成立,求正整数
的最大值.
(本小题满分14分)
已知数列
的前
项和为
,对一切正整数
,点
都在函数
的图象上,且在点
处的切线的斜率为
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,求数列
的前
项和
;
(Ⅲ)设
,
,等差数列
的任一项
,其中
是
中最小的数,
,求数列
的通项公式.
(本小题满分14分)
已知函数
的反函数为
,数列
和
满足:
,
,函数
的图象在点
处的切线在
轴上的截距为
.(Ⅰ)求数列{
}的通项公式;
(Ⅱ)若数列
的项仅
最小,求
的取值范围;
(Ⅲ)令函数
,
,数列
满足:
,
,且
,其中
.证明:
.