摘要:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.
网址:http://m.1010jiajiao.com/timu3_id_516537[举报]
材料:采访零向量
W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?
零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.
W:好的,那就开始吧!你的名字有什么特殊的含义吗?
零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.
W:你与其他向量有什么共同之处呢?
零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.
W:你有哪些值得骄傲的特殊荣耀呢?
零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.
W:你有如此多的荣耀,那么是否还有烦恼之事呢?
零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.
W:OK!采访就到这里吧,非常感谢你的合作,再见!
零向量:Bye!
阅读上面的材料回答下面问题.
应用零向量时应注意哪些问题?
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=λ
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
| e1 |
| e2 |
| a |
| a |
| e1 |
| e2 |
| a |
| i |
| j |
| i |
| j |
| π |
| 3 |
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
| i |
| j |
| a |
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=λ
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.
查看习题详情和答案>>
| e1 |
| e2 |
| a |
| a |
| e1 |
| e2 |
| a |
| i |
| j |
| i |
| j |
| π |
| 3 |
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
| i |
| j |
| a |
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.