摘要:(理)若函数y=() |1-x|+m的图象与x轴有公共点.则m的取值范围是- ( ) A.m≤-1 B.-1≤m<0 C.m≥1 D.0<m≤1 =则的值为 ( ) A.a B.b C.a,b中较小的数 D.a,b中较大的数
网址:http://m.1010jiajiao.com/timu3_id_514246[举报]
已知函数f(x)=
数列{an}满足an=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.
查看习题详情和答案>>
|
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.
已知函数
数列{an}满足an=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.
查看习题详情和答案>>
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.
查看习题详情和答案>>
已知函数f(x)=-x3+ax2+1,(a∈R)
(1)若在f(x)的图象上横坐标为
的点处存在垂直于y轴的切线,求a的值;
(2)若f(x)在区间(-2,3)内有两个不同的极值点,求a取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象与函数f(x)的图象恰有三个交点,若存在,试出实数m的值;若不存在,说明理由. 查看习题详情和答案>>
(1)若在f(x)的图象上横坐标为
| 2 | 3 |
(2)若f(x)在区间(-2,3)内有两个不同的极值点,求a取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数g(x)=x4-5x3+(2-m)x2+1的图象与函数f(x)的图象恰有三个交点,若存在,试出实数m的值;若不存在,说明理由. 查看习题详情和答案>>