摘要: 设Sn为数列{an}的前n项的和.且Sn = (an -1)(n∈N*). 数列{bn }的通项公式 bn = 4n+5. ①求证:数列{an }是等比数列, ②若d∈{a1 .a2 .a3 .--}∩{b1 .b2 .b3 .--}.则称d为数列{an }和{bn }的公共项.按它们在原数列中的先后顺序排成一个新的数列{dn }.求数列{dn }的通项公式.
网址:http://m.1010jiajiao.com/timu3_id_504098[举报]
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式.
(3)在满足(2)的条件下,求数列{
}的前n项和Tn
查看习题详情和答案>>
(1)求证:数列{an}是等比数列.
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式.
(3)在满足(2)的条件下,求数列{
| 2n+1 | bn |
设Sn为数列{an}的前n项和,且Sn=
(an-1)(n∈N*),数列{bn}的通项公式为bn=4n+3(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若将数列{an}与{bn}的公共项按它们在原来数列中的先后顺序排成一个新数列{dn},证明数列{dn}的通项公式为dn=32n+1(n∈N*). 查看习题详情和答案>>
| 3 | 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若将数列{an}与{bn}的公共项按它们在原来数列中的先后顺序排成一个新数列{dn},证明数列{dn}的通项公式为dn=32n+1(n∈N*). 查看习题详情和答案>>
设Sn为数列{an}的前n项和,对任意的n∈N*,都有Sn=(m+1)-man(m为常数,且m>0).
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式;
(3)在满足(2)的条件下,求证:数列{bn2}的前n项和Tn<
.
查看习题详情和答案>>
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足b1=2a1,bn=f(bn-1)(n≥2,n∈N*),求数列{bn}的通项公式;
(3)在满足(2)的条件下,求证:数列{bn2}的前n项和Tn<
| 89 | 18 |