摘要:已知.(). (1)求关于的表达式.并求的最小正周期, (2)若.且的最小值为5.求的值.
网址:http://m.1010jiajiao.com/timu3_id_504018[举报]
已知函数f(x)=x+1,设g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*)
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果)
(2)若关于x的函数y=x2+
gi(x)(n∈N*)在区间(-∞,-1]上的最小值为6,求n的值.
(符号“
”表示求和,例如:
i=1+2+3+…+n.)
查看习题详情和答案>>
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果)
(2)若关于x的函数y=x2+
| n |
| i=1 |
(符号“
| n |
| i=1 |
| n |
| i=1 |
已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz,
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
查看习题详情和答案>>
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
| 线段s与线段s1的关系 | m、r的取值或表达式 |
| s所在直线平行于s1所在直线 | |
| s所在直线平分线段s1 |