摘要:若数列{}满足 则的值为 .
网址:http://m.1010jiajiao.com/timu3_id_502068[举报]
若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(Ⅰ)证明数列
是“平方递推数列”,且数列
为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前
项积为
,即
,求
;
(Ⅲ)在(Ⅱ)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看习题详情和答案>>
若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(Ⅰ)证明数列
是“平方递推数列”,且数列
为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前
项积为
,即
,求
;
(Ⅲ)在(Ⅱ)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
若数列
满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程
有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程
有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用
可求得
,进而求得
.
根据上述结论求下列问题:
(1)当
,
(
)时,求数列
的通项公式;
(2)当
,
(
)时,求数列
的通项公式;
(3)当
,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.