摘要:2.解:由已知------------------2分 由----4分 ∴当a≠0时.{an} 从第二项起成等比数列. 若{an}是等比数列.则首项为a.公比为2. ∴2a+b=a ∴a+b=0--------------------6分 ∴若{an}为等比数列.a.b应满足的条件是a+b=0.且a.b均不为零.-8分 ----------10分 -------12分 3. 长方体ABCD-A1B1C1D1中.AB=BC=1.AA1=2.E 是侧棱BB1中点. (Ⅰ)求证:直线AE⊥平面A1D1E, (Ⅱ)求二面角E-AD1-A1的大小, (Ⅲ)求三棱锥A-C1D1E的体积. 解:(Ⅰ)已知几何体为长方体 ∴A1D1⊥平面ABB1A1 ∴A1D1⊥AE------------2分 又AB=1.BB1=2.E为BB1的中点 ∴△ABE为等腰直角三角形 ∴AE=同理A1E= ∴∠AEA1为直角 即AE⊥A1E ∴AE⊥平面A1D1E------------4分 (Ⅱ)取AA1中点O.连OE.则EO⊥A1A.EO⊥A1D1. ∴EO⊥平面ADD1A1----------------5分 过O在平面ADD1A1中作OF⊥AD1.交AD1于F 连结EF.则AD1⊥EF ∴∠EFO为二面角E-AD1-A1的平面角--------7分 即二面角------------9分 (Ⅲ)由于AB∥C1D1 ∴AB∥平面C1D1E -------12分 高考数学中档题精选(5)
网址:http://m.1010jiajiao.com/timu3_id_499073[举报]
已知函数f(x)=2x-m(m∈R),g(x)=ax2+
ax+1(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
| 1 | 2 |
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
已知动直线y=kx交圆(x-2)2+y2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足
,动点M的轨迹C的方程为F(x,y)=0.
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)
查看习题详情和答案>>
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)
已知函数f(x)=2x-m(m∈R),g(x)=ax2+
ax+1(a∈R),h(x)=2|x-a|
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
| 1 |
| 2 |
(Ⅰ)设A:存在实数x使得f(x)≤0(m∈R)成立;B:当a=-2时,不等式g(x)>0有解.若“A”是“B”的必要不充分条件,求实数m的取值范围;
(Ⅱ)设C:函数y=h(x)在区间(4,+∞)上单调递增;D:?x∈R,不等式g(x)>0恒成立.请问,是否存在实数a使“非C”为真命题且“C∨D”也为真命题?若存在,请求实数a的取值范围;若不存在,请说明理由.
| OM |
| OB |
| OM |
| AB |
(1)试用点M的坐标x,y表示y0,x1,y1;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分)
①对称性;
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);
③图形范围;
④渐近线;
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性. 查看习题详情和答案>>