网址:http://m.1010jiajiao.com/timu3_id_480293[举报]
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由. 查看习题详情和答案>>
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.![]()
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
![]()
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
【解析】二次函数的综合运用
查看习题详情和答案>>
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
![]()
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.
【解析】二次函数的综合运用
查看习题详情和答案>>
①填表(表中阴影部分不需填空):
| x | … | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | … | |
| y=x2 | … | ▲ | ▲ | ▲ | ▲ | ▲ | ▲ | ▲ | … | |||
| y=(x+3)2 | … | ▲ | ▲ | ▲ | ▲ | ▲ | ▲ | ▲ | … |
(2)借鉴(1)中研究的经验,解决问题:
①把函数y=2x的图象向______(填“左”或“右”)平移______个单位长度可以得到函数y=2x+6的图象.
②直接写出函数y=
查看习题详情和答案>>