摘要:(1).建立恰当的平面直角坐标系.并求出隧道拱抛物线的解析式, (2)在隧道拱的两侧距地面3米高处各安装一盏路灯.在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置, (3) 为了保证行车安全.要求行驶车辆顶部 与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车.装载货物后.其宽度为米.车载货物的顶部与路面的距离为2.5米.该车能否通过这个隧道?请说明理由.
网址:http://m.1010jiajiao.com/timu3_id_479935[举报]
在Rt△ABO中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①, 当E点恰好落在线段AB上,求点E的坐标;
![]()
(Ⅱ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移(如图②),图中是否存在一条与线段
始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由.
(Ⅲ)若点D从原点出发沿x轴的正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.
在Rt△ABO中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①, 当E点恰好落在线段AB上,求点E的坐标;
![]()
(Ⅱ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移(如图②),图中是否存在一条与线段
始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由.
(Ⅲ)若点D从原点出发沿x轴的正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.
查看习题详情和答案>>
在Rt△ABO中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①, 当E点恰好落在线段AB上,求点E的坐标;

(Ⅱ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移(如图②),图中是否存在一条与线段
始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由.
(Ⅲ)若点D从原点出发沿x轴的正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.
(Ⅰ)如图①, 当E点恰好落在线段AB上,求点E的坐标;
(Ⅱ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移(如图②),图中是否存在一条与线段
(Ⅲ)若点D从原点出发沿x轴的正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.