摘要:[解析]从表格中的数据我们可以看出当x增加10时.对应y的值减小100.所以y与x之间可能是一次函数的关系.我们可以根据图象发现这些点在一条直线上.所以y与x之间是一次函数的关系.然后设出一次函数关系式.求出其关系式. [答案](1)画图如图, 由图可猜想与是一次函数关系. 设这个一次函数为= + ∵这个一次函数的图象经过这两点. ∴ 解得 ∴函数关系式是:=-10+800 (2)设工艺厂试销该工艺品每天获得的利润是W元.依题意得 W=(-20)(-10+800)=-10+1000-16000 =-10(-50)+9000 ∴当=50时.W有最大值9000. 所以.当销售单价定为50元∕件时.工艺厂试销该工艺品每天获得的利润最大.最大利润是9000元. (3)对于函数 W=-10(-50)+9000. 当≤45时.W的值随着x值的增大而增大.销售单价定为45元∕件时.工艺厂试销该工艺品每天获得的利润最大.
网址:http://m.1010jiajiao.com/timu3_id_478846[举报]
我市某工艺厂为配合奥运会,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
| 销售单价x(元/件) | …… | 30 | 40 | 50 | 60 | …… |
| 每天销售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
![]()
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
分析 (1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.
(2)利用二次函数的知识求最大值.
查看习题详情和答案>>21、心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30)
(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?
(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?
(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?
(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.
查看习题详情和答案>>
| 提出概念所用时间(x) | 2 | 5 | 7 | 10 | 12 | 13 | 14 | 17 | 20 |
| 对概念的接受能力(y) | 47.8 | 53.5 | 56.3 | 59 | 59.8 | 59.9 | 59.8 | 58.3 | 55 |
(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?
(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?
(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.
27、一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米)
(1)上述的哪些量发生变化?自变量是?因变量是?
(2)写出y与x的关系式;
(3)用表格表示汽车从出发地行驶10km、20km、30km、40km、50km时的剩油量;
(4)根据表格中的数据说明剩油量是怎样随着路程的改变而变化的;
(5)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多少千米?
(6)请你估计这车辆在中途不加油的情况下最远能运行多少千米?
查看习题详情和答案>>
(1)上述的哪些量发生变化?自变量是?因变量是?
(2)写出y与x的关系式;
(3)用表格表示汽车从出发地行驶10km、20km、30km、40km、50km时的剩油量;
(4)根据表格中的数据说明剩油量是怎样随着路程的改变而变化的;
(5)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多少千米?
(6)请你估计这车辆在中途不加油的情况下最远能运行多少千米?
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=
[(x1-
)2+(x2-
)2+…+(xn-
)2])
查看习题详情和答案>>
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
| 甲 | 10 | 8 | 9 | 8 | 10 | 9 |
| 乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=
| 1 |
| n |
. |
| x |
. |
| x |
. |
| x |