摘要:22.如图.点P在经过点B的直线上.且纵坐标为-1.Q点在y=的图象上.若PQ∥y轴.求Q点的坐标.
网址:http://m.1010jiajiao.com/timu3_id_477657[举报]
如图,点A是反比例函数
y上一点,作AB⊥x轴于点B,且△AOB的面积为2,点A坐标为(-1,m).
(1)求k和m的值.
(2)若直线y=ax+3经过点A,交另一支双曲线于点C,求△AOC的面积.
(3)指出x取何值时,一次函数的值大于反比例函数的值,直接写出结果.
(4)在y轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(1)求k和m的值.
(2)若直线y=ax+3经过点A,交另一支双曲线于点C,求△AOC的面积.
(3)指出x取何值时,一次函数的值大于反比例函数的值,直接写出结果.
(4)在y轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.
如图,点A是反比例函数
y上一点,作AB⊥x轴于点B,且△AOB的面积为2,点A
坐标为(-1,m).
(1)求k和m的值.
(2)若直线y=ax+3经过点A,交另一支双曲线于点C,求△AOC的面积.
(3)指出x取何值时,一次函数的值大于反比例函数的值,直接写出结果.
(4)在y轴上是否存在点P,使得△PAC的面积为6?如果存在,请求出点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
如图,点C将线段AB分成两部分,如果
,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
,那么称直线l为该图形的黄金分割线.
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.
请你说明理由.
(4)如图4,点E是□ABCD的边AB的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线.请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.