摘要:已知:如图.AD是△ABD和△ACD的公共边. 求证:∠BDC =∠BAC +∠B +∠C.
网址:http://m.1010jiajiao.com/timu3_id_463956[举报]
如图,已知:AB=AD,D是BC中点,E是AD上任意一点,连接EB、EC,求证:EB=EC.
分析:(1)观察图形,图中线段EB和线段EC是________三角形中的边.现需证EB=EC,可证△ABE≌________或△BED≌________.
(2)由已知可得BD=CD,不要忽略图形中隐含的已知条件AE、DE、AD是三对全等三角形的公共边.
(3)找需知,只需证得∠BAE=∠CAE或∠BDE=∠CDE,即可得到上述两个三角形全等(恰当选择SAS来判定).
(4)再看已知,三组对应边对应相等,可以利用SSS来证明△ABD≌△ACD,就得到∠BAE=∠CAE或∠BDE=∠CDE.
请同学们完成下列填空
证明一:∵D是BC中点 ∴BD=CD
在△ABD和△ACD中,
________
________
________
∴△ABD≌△ACD(SSS)
∴∠BAE=∠CAE(全等三角形的对应角相等)
在△ABE和△ACE中,
________
________
________
∴△ABE≌△ACE(SAS)
∴EB=EC(全等三角形的对应边相等)
(请同学们根据分析思路,写出第二种证明方法)