摘要:答案:B. 解析:正数的奇次幂是正数.0的奇次幂是0.所以都不正确.
网址:http://m.1010jiajiao.com/timu3_id_460148[举报]
加试题(本小题满分20分,其中(1)、(2)、(3)题各3分,(4)题11分)
(1)一个正数的平方根为3-a和2a+3,则这个正数是
(2)若x2+2x+y2-6y+10=0,则xy=
(3)已知a,b分别是6-
的整数部分和小数部分,则2a-b=
(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
①∠APB=∠AP′C=∠AP′P+∠PP′C;
②AP=AP′,且∠PAP′=
③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2.

查看习题详情和答案>>
(1)一个正数的平方根为3-a和2a+3,则这个正数是
81
81
(2)若x2+2x+y2-6y+10=0,则xy=
-1
-1
(3)已知a,b分别是6-
| 13 |
| 13 |
| 13 |
(4)阅读下面的问题,并解答问题:
1)如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数是多少?(请在下列横线上填上合适的答案)
分析:由于PA,PB,PC不在同一个三角形中,为了解决本题我们可以将△ABP绕顶点A逆时针旋转到△ACP′处,此时可以利用旋转的特征等知识得到:
①∠APB=∠AP′C=∠AP′P+∠PP′C;
②AP=AP′,且∠PAP′=
60
60
度,所以△APP′为等边
等边
三角形,则∠AP′P=60
60
度;③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C为
直角
直角
三角形,则∠PP′C=90
90
度,从而得到∠APB=150
150
度.2)请你利用第1)题的解答方法,完成下面问题:
如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为边BC上的点,且∠EAF=45°,试说明:EF2=BE2+FC2.
如图,钟面上有1,2,3,…,11,12这12个数字.
(1)试在某些数的前面添加负号,使它们的代数和为零
(2)能否改变钟面上的数,比如只剩下6个偶数,仍按第(1)小题的要求来做?
[思路探究]
(1)我们先试着选定任意几个数字,在其前面添加负号,如
-12-11-10+9+8+7+6-5+4+3+2+1-2.
这当然不是我们要的答案,但我们可以将其调整,比如改变1前面的符号,得
-12-11-10+9+8+7+6-5+4+3+2-1-0.
用这种方法当然可以得到许多答案,但我们并不满足.我们希望寻找其中的规律,使我们能找到更多的解答.我们发现:
在调整符号的过程中,若将一个正数变号,12个数的代数和就减少这个正数的两倍;若将一个负数变号,12个数的代数和就增加这个负数的绝对值的两倍.
要使12个数的代数和为零,其中正数的和的绝对值必须与负数的和的绝对值相等,均为12个数之和的-半,即等于39.
由此,我们只要找到几个和为39的数,将这些数添上负号即可.
由于最大3个数之和为33<39,因此必须再添上一个6才有解答,所以添加负号的数至少要有4个.同理可知,添加负号的数最多不超过8个.
根据以上规律,就能在很短的时间内得到许多解答,但是要写出所有解答,还必须把答案作适当的分类.本题共有124个解答,亲爱的读者,你能写出这124个解答来吗?
(2)因为2+4+6+8+10+12-42,它的一半为21,而奇数不可能通过偶数求和得到,所以只剩下6个偶数时,不能按第(1)小题的要求来做.