摘要:实验与探究 (1)在图1.2.3中.给出平行四边形的顶点的坐标.写出图1.2.3中的顶点的坐标.它们分别是 . . , (2)在图4中.给出平行四边形的顶点的坐标.求出顶点的坐标(点坐标用含的代数式表示), 归纳与发现 (3)通过对图1.2.3.4的观察和顶点的坐标的探究.你会发现:无论平行四边形处于直角坐标系中哪个位置.当其顶点坐标为时.则四个顶点的横坐标之间的等量关系为 ,纵坐标之间的等量关系为 , 运用与推广 (4)在同一直角坐标系中有抛物线和三个点.(其中).问当为何值时.该抛物线上存在点.使得以为顶点的四边形是平行四边形?并求出所有符合条件的点坐标. 解:(1)...···························································· 2分 (2)分别过点作轴的垂线.垂足分别为. 分别过作于.于点. 在平行四边形中..又. . . 又. .·································································································· 5分 .. 设.由.得. 由.得..································ 7分 (此问解法多种.可参照评分) (3).或..························· 9分 (4)若为平行四边形的对角线.由(3)可得.要使在抛物线上. 则有.即. ..此时.································································ 10分 若为平行四边形的对角线.由(3)可得.同理可得.此时. 若为平行四边形的对角线.由(3)可得.同理可得.此时. 综上所述.当时.抛物线上存在点.使得以为顶点的四边形是平行四边形. 符合条件的点有...······················································· 12分

网址:http://m.1010jiajiao.com/timu3_id_459803[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网