摘要:求证:y=x2+2mx-4(m-5)与x轴必有2个交点.
网址:http://m.1010jiajiao.com/timu3_id_457253[举报]
已知二次函数y=(n-1)x2+2mx+1图象的顶点在x轴上,
(1)试判断这个二次函数图象的开口方向,并说明你的理由;
(2)求证:函数y=m2x2+2(n-1)x-1的图象与x轴必有两个不同的交点. 查看习题详情和答案>>
(1)试判断这个二次函数图象的开口方向,并说明你的理由;
(2)求证:函数y=m2x2+2(n-1)x-1的图象与x轴必有两个不同的交点. 查看习题详情和答案>>
(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+
| 5 |
| 4 |
(2)若AN=
| 15 |
| 8 |
| 9 |
| 8 |
(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长. 查看习题详情和答案>>
(2012•丰台区一模)已知:关于x的一元二次方程:x2-2mx+m2-4=0.
(1)求证:这个方程有两个不相等的实数根;
(2)当抛物线y=x2-2mx+m2-4与x轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;
(3)将(2)中的抛物线在x轴下方的部分沿x轴翻折,其余部分保持能够不变,得到图形C1,将图形C1向右平移一个单位,得到图形C2,当直线y=x+b(b<1)与图形C2恰有两个公共点时,写出b的取值范围.
查看习题详情和答案>>
(1)求证:这个方程有两个不相等的实数根;
(2)当抛物线y=x2-2mx+m2-4与x轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;
(3)将(2)中的抛物线在x轴下方的部分沿x轴翻折,其余部分保持能够不变,得到图形C1,将图形C1向右平移一个单位,得到图形C2,当直线y=x+b(b<1)与图形C2恰有两个公共点时,写出b的取值范围.