网址:http://m.1010jiajiao.com/timu3_id_452531[举报]
反比例函数y=
(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=
,故ab=k,所以S=|k|(如图(1)).
这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:
例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=
(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.
解答:
=|k|
=|k|
故
=![]()
例2:如图(3),在y=
(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有( )
![]()
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵
=
|k|=
,
=
|k|=![]()
=
|k|=![]()
S1=S2=S3,故选A.
例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.
![]()
解答:∵S△AOM=
|k|
又S△AOM=3,
∴
|k|=3,|k|=6
∴k=±6
又∵曲线在第三象限
∴k>0∴k=6
∴所以反比例函数的解析式为y=
.
根据是述意义,请你解答下题:
如图(5),过反比例函数y=
(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得
![]()
A.S1>S2
B.S1=S2
C.S1<S2
D.大小关系不能确定
已知二次函数
中,其函数
与自变量
之间的部分对应值如下表所示:
| x | …… | 0 | 1 | 2 | 3 | 4 | 5 | …… |
| y | …… | 4 | 1 | 0 | 1 | 4 | 9 | …… |
(2)点A(
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式: ;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数
已知二次函数
中,其函数
与自变量
之间的部分对应值如下表所示:
|
x |
…… |
0 |
1 |
2 |
3 |
4 |
5 |
…… |
|
y |
…… |
4 |
1 |
0 |
1 |
4 |
9 |
…… |
(1)当x=-1时,y的值为 ;
(2)点A(
,
)、B(
,
)在该函数的图象上,则当![]()
时,
与
的大小关系是 ;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式: ;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数
的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?=】
查看习题详情和答案>>