摘要:17. 如图14().两个不全等的等腰直角三角形和叠放在一起.并且有公共的直角顶点. (1)将图14()中的绕点顺时针旋转角.在图14()中作出旋转后的(保留作图痕迹.不写作法.不证明). (2)在图14()中.你发现线段.的数量关系是 .直线.相交成 度角. (3)将图14()中的绕点顺时针旋转一个锐角.得到图14().这时(2)中的两个结论是否成立?作出判断并说明理由.若绕点继续旋转更大的角时.结论仍然成立吗?作出判断.不必说明理由.
网址:http://m.1010jiajiao.com/timu3_id_450958[举报]
30、如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC、BD的数量关系是
(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.

查看习题详情和答案>>
(1)在图1中,你发现线段AC、BD的数量关系是
相等
;直线AC、BD相交成角的度数是90°
.(2)将图1的△OAB绕点O顺时针旋转90°角,在图2中画出旋转后的△OAB.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否成立?作出判断并说明理由.若△OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.
如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.

(1)在图1中,你发现线段AC,BD的数量关系是
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
解:(2)在图2中,(1)中的两个结论
理由如下:延长CA交BD于点
(2)在图3中,(1)中的两个结论
理由如下:延长CA交BD于点
查看习题详情和答案>>
(1)在图1中,你发现线段AC,BD的数量关系是
相等
相等
,直线AC,BD相交成90
90
度角.(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
解:(2)在图2中,(1)中的两个结论
成立
成立
(是否成立);理由如下:延长CA交BD于点
E,∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
E,∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
;∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角.
(2)在图3中,(1)中的两个结论
成立
成立
(是否成立);理由如下:延长CA交BD于点
F
F
,交OD于点E
E
.29、如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC,BD的数量关系是
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.

查看习题详情和答案>>
(1)在图1中,你发现线段AC,BD的数量关系是
相等
,直线AC,BD相交成90
度角.(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
27、如图1,两个不全等的四边形ABCD、四边形CGFE是正方形,连接BG,DE.交DC于H,交CG于K
(1)观察图形,①猜想BG与DE之间长度关系;②猜想BG与DE所在直线的位置关系,并证明你的猜想.
直接回答:连接四边形DBEG四边中点所得四边形是
(2)如图2,将原题中正方形改为菱形,且∠BCD=∠GCE=90°.则(1)中的①、②的结论是否成立?若成立,请证明;若不成立,请说明理由.
直接回答:连接四边形DBEG四边中点所得四边形是

(3)如图3,将原题中正方形改为矩形,且BC=mCG、CD=mCE则(1)中的①、②结论是否成立?不要证明
直接回答:连接四边形DBEG四边中点所得四边形是

查看习题详情和答案>>
(1)观察图形,①猜想BG与DE之间长度关系;②猜想BG与DE所在直线的位置关系,并证明你的猜想.
直接回答:连接四边形DBEG四边中点所得四边形是
正方
形(2)如图2,将原题中正方形改为菱形,且∠BCD=∠GCE=90°.则(1)中的①、②的结论是否成立?若成立,请证明;若不成立,请说明理由.
直接回答:连接四边形DBEG四边中点所得四边形是
正方
形(3)如图3,将原题中正方形改为矩形,且BC=mCG、CD=mCE则(1)中的①、②结论是否成立?不要证明
直接回答:连接四边形DBEG四边中点所得四边形是
矩
形.