网址:http://m.1010jiajiao.com/timu3_id_4471009[举报]
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(1)证明:面面;
(2)求与所成的角;
(3)求面与面所成二面角的余弦值.
【解析】(1)利用面面垂直的性质,证明CD⊥平面PAD.
(2)建立空间直角坐标系,写出向量与的坐标,然后由向量的夹角公式求得余弦值,从而得所成角的大小.
(3)分别求出平面的法向量和面的一个法向量,然后求出两法向量的夹角即可.
查看习题详情和答案>>
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
查看习题详情和答案>>