摘要: 已知函数当时.若对于任意x的都有≤1成立.证明:≤.
网址:http://m.1010jiajiao.com/timu3_id_4470321[举报]
已知函数f(x)=
+lnx.
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在[
,2]上的最大值和最小值;
(3)当a=1时,求证:对大于1的任意正整数n,都有lnn>
+
+
+…+
.
查看习题详情和答案>>
1-x |
ax |
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在[
1 |
2 |
(3)当a=1时,求证:对大于1的任意正整数n,都有lnn>
1 |
2 |
1 |
3 |
1 |
4 |
1 |
n |
已知函数f(x)=4x3-3x2cosθ+
,其中x∈R,θ为参数,且0≤θ≤
.
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围. 查看习题详情和答案>>
1 |
32 |
π |
2 |
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围. 查看习题详情和答案>>
已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.
(1)求证:函数f(x)在R上是增函数;
(2)若关于x的不等式f(x2-ax+5a)<2的解集为{x|-3<x<2},求f(2009)的值;
(3)在(2)的条件下,设an=|f(n)-14|(n∈N*),若数列{an}从第k项开始的连续20项之和等于102,求k的值. 查看习题详情和答案>>
(1)求证:函数f(x)在R上是增函数;
(2)若关于x的不等式f(x2-ax+5a)<2的解集为{x|-3<x<2},求f(2009)的值;
(3)在(2)的条件下,设an=|f(n)-14|(n∈N*),若数列{an}从第k项开始的连续20项之和等于102,求k的值. 查看习题详情和答案>>