摘要: 已知抛物线 y= 2―4 . 则顶点坐标为 ,
网址:http://m.1010jiajiao.com/timu3_id_446831[举报]
已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
,
),与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ,伴随直线的解析式 ;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件. 查看习题详情和答案>>
| b |
| 2a |
| 4ac-b2 |
| 4a |
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件. 查看习题详情和答案>>
已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0),与y轴负半轴交于C,顶点为D.
(1)当OC=OB时,求抛物线的解析式;
(2)在(1)的条件下,抛物线的对称轴上是否存在点P,使△ACP绕点P逆时针旋转90°后,点C恰好落在抛物线上若存在,求旋转后△ACP三个顶点的坐标;
(3)若抛物线y=ax2+bx+c与y轴的交点C在y轴负半轴上移动,则△ACD与△ACB面积之比
是否为一定值?若是定值,请求出其值;若不是定值,请说明理由.
查看习题详情和答案>>
(1)当OC=OB时,求抛物线的解析式;
(2)在(1)的条件下,抛物线的对称轴上是否存在点P,使△ACP绕点P逆时针旋转90°后,点C恰好落在抛物线上若存在,求旋转后△ACP三个顶点的坐标;
(3)若抛物线y=ax2+bx+c与y轴的交点C在y轴负半轴上移动,则△ACD与△ACB面积之比
| S△ACD | S△ACB |
已知抛物线y=ax2-(a+c)x+c(其中a≠c且a≠0).
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线y=-x+k与此抛物线的另一个交点为B(
,-c),求此抛物线的解析式;
(3)点P在(2)中x轴上方的抛物线上,直线y=-x+k与 y轴的交点为C,若tan∠POB=
tan∠POC,求点P的坐标;
(4)若(2)中的二次函数的自变量x在n≤x<n+1(n为正整数)的范围内取值时,记它的整数函数值的个数为N,则N关于n的函数关系式为 .
查看习题详情和答案>>
(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)
(2)若经过此抛物线顶点A的直线y=-x+k与此抛物线的另一个交点为B(
| a+c |
| a |
(3)点P在(2)中x轴上方的抛物线上,直线y=-x+k与 y轴的交点为C,若tan∠POB=
| 1 |
| 4 |
(4)若(2)中的二次函数的自变量x在n≤x<n+1(n为正整数)的范围内取值时,记它的整数函数值的个数为N,则N关于n的函数关系式为