摘要:(三)性质:方程:, 焦点: .通径, 准线: , 焦半径:过焦点弦长 注意:(1)几何特征:焦点到顶点的距离=,焦点到准线的距离=,通径长= 顶点是焦点向准线所作垂线段中点. (2)抛物线上的动点可设为P或P
网址:http://m.1010jiajiao.com/timu3_id_4467938[举报]
如图,已知椭圆C:
+
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1:
+y2=1和C2:
+
=1判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
(1)已知椭圆C1:
x2 |
4 |
x2 |
16 |
y2 |
4 |
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.
已知等轴双曲线C的两个焦点F1、F2在直线y=x上,线段F1F2的中点是坐标原点,且双曲线经过点(3,
).
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=
;②xy=9;③xy=
.请确定哪个是等轴双曲线C的方程,并求出此双曲线的实轴长;
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=
x+
的图象也是双曲线,请尝试研究此双曲线的性质,你能得到哪些结论?(本小题将按所得到的双曲线性质的数量和质量酌情给分)
查看习题详情和答案>>
3 |
2 |
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=
27 |
4 |
9 |
2 |
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=
| ||
3 |
1 |
x |
(2011•南汇区二模)已知动直线y=kx交圆(x-2)2+y2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足
=
,动点M的轨迹C的方程为F(x,y)=0.
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)
查看习题详情和答案>>
OM |
AB |
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)
已知点A(x1,y1)在圆(x-2)2+y2=4上运动,点A不与(0,0)重合,点B(4,y0)在直线x=4上运动,动点M(x,y)满足
∥
,
=
.动点M的轨迹C的方程为F(x,y)=0.
(1)试用点M的坐标x,y表示y0,x1,y1;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分)
①对称性;
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);
③图形范围;
④渐近线;
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性. 查看习题详情和答案>>
OM |
OB |
OM |
AB |
(1)试用点M的坐标x,y表示y0,x1,y1;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分)
①对称性;
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);
③图形范围;
④渐近线;
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性. 查看习题详情和答案>>