摘要:解:①若两个角是对顶角.则这两个角相等. ②若四边形是平行四边形.则其对角线交于一点且互相平分. ③若一个数是偶数.则这个数能被2整除. ④若二次方程ax2+bx+c=0的判别式△>0.则该方程有两个不等实根.
网址:http://m.1010jiajiao.com/timu3_id_4465045[举报]
如图,已知椭圆
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆
和
判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.
查看习题详情和答案>>
(1)已知椭圆
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.
| x2 |
| a2 |
| y2 |
| b2 |
(1)已知椭圆C1:
| x2 |
| 4 |
| x2 |
| 16 |
| y2 |
| 4 |
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.