网址:http://m.1010jiajiao.com/timu3_id_4464790[举报]
每次抛掷一枚骰子(六个面上分别标以数字
(I)连续抛掷2次,求向上的数不同的概率;
(II)连续抛掷2次,求向上的数之和为6的概率;
(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。
本小题主要考查概率的基本知识,运用数学知识解决实际问题的能力。满分12分。
查看习题详情和答案>>(本小题满分12分)
有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.
(Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,
,,,共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,,共有6种.
所以P(B)=.
(本小题满分12分)
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
查看习题详情和答案>>在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。
(Ⅰ)、试问此次参赛学生总数约为多少人?
(Ⅱ)、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?
可共查阅的(部分)标准正态分布表
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1.2 1.3 1.4 1.9 2.0 2.1 | 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 | 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 | 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 | 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 | 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 | 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 | 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 | 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 | 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 | 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。
查看习题详情和答案>>
有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
查看习题详情和答案>>
零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.
(Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,
,,,共有15种.
(ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,,共有6种.
所以P(B)=.
(本小题满分12分)
如图,在五面体ABCDEF中,四边形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求异面直线CE与AF所成角的余弦值;
(Ⅱ)证明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
查看习题详情和答案>>