摘要:22.已知函数f(x)=x+,其中x. (1)判断f(x)的奇偶性, (2)判断当x>0时.f(x)的单调性.并证明之, (3)若的最小值.
网址:http://m.1010jiajiao.com/timu3_id_4460689[举报]
已知函数f(x)=x+
+b,其中a,b为实数.
(1)判断函数f(x)的奇偶性;
(2)若f(1)=4,且f(-1)=-2,求函数f(x)在(0,+∞)上的单调区间,并用定义加以证明;
(3)在(2)的条件下,求函数f(x)在[
,3]上的最大值和最小值.
查看习题详情和答案>>
| a |
| x |
(1)判断函数f(x)的奇偶性;
(2)若f(1)=4,且f(-1)=-2,求函数f(x)在(0,+∞)上的单调区间,并用定义加以证明;
(3)在(2)的条件下,求函数f(x)在[
| 1 |
| 2 |
已知函数f(x)=4x3-3x2cosθ+
,其中x∈R,θ为参数,且0≤θ≤
.
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围. 查看习题详情和答案>>
| 1 |
| 32 |
| π |
| 2 |
(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围. 查看习题详情和答案>>
已知函数f(x)=
(ax-a-x),其中a>0且a≠1.
(1)分别判断f(x)在(-∞,+∞)上的单调性;
(2)比较f(1)-1与f(2)-2、f(2)-2与f(3)-3的大小,由此归纳出一个更一般的结论,并证明;
(3)比较
与
、
与
的大小,由此归纳出一个更一般的结论,并证明.
查看习题详情和答案>>
| a |
| a2-1 |
(1)分别判断f(x)在(-∞,+∞)上的单调性;
(2)比较f(1)-1与f(2)-2、f(2)-2与f(3)-3的大小,由此归纳出一个更一般的结论,并证明;
(3)比较
| f(1) |
| 1 |
| f(2) |
| 2 |
| f(2) |
| 2 |
| f(3) |
| 3 |