摘要:用数字0.1.2.3.4.5组成没有重复数字的数. (1)能组成多少个是25的倍数的四位数, (2)能组成多少个比240135大的数, (3)若把所组成的全部六位数从小到大排列起来.第100个数是多少? 答案:(1),(2),(3)150342.

网址:http://m.1010jiajiao.com/timu3_id_4458955[举报]

某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:

(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;

(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为中任选出两位同学,共同帮助成绩在中的某一个同学,试列出所有基本事件;若同学成绩为43分,同学成绩为95分,求两同学恰好被安排在“二帮一”中同一小组的概率.

分 组

频 数

频 率[来源:学_科_网]

[40, 50 )

2

0.04

[ 50, 60 )

3

0.06

[ 60, 70 )

14

0.28

[ 70, 80 )

15

0.30

[ 80, 90 )

 

 

[ 90, 100 ]

4

0.08

合 计

 

 

 

 

 

 

 

 

 

 

 

 

【解析】第一问利用表格可知第五行以此填入  12   0.24

第七行以此填入  50   1   估计本次全校85分以上学生比例为32%

第二问中,设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4

A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4

A1、B1两同学恰好被安排在“二帮一”中同一小组的有   A1B1B2;A1B1B3;A1B1B4

l利用古典概型概率得到。

(Ⅰ)第五行以此填入  12   0.24                ……………2分

第七行以此填入  50   1                  ……………4分

估计本次全校85分以上学生比例为32%                ……………6分

(Ⅱ)设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4

A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4

A1、B1两同学恰好被安排在“二帮一”中同一小组的有   A1B1B2;A1B1B3;A1B1B4     

所以  A1、B1两同学恰好被安排在“二帮一”中同一小组的概率为 3 /12 =1 /4

 

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网