摘要:3.某医院要在20天内接待8所学校的学生体检.每天只安排一所学校.其中有一所人数较多的学校要连续体检3天.其余学校均只需一天.则在这20天内不同的安排方法为(B ) A. 种 B. 种 C. 种 D 种
网址:http://m.1010jiajiao.com/timu3_id_4458601[举报]
某工厂生产一批精密仪器,这个厂有两个分厂,分设在甲、乙两城市.在甲城市的分厂生产半成品,然后送到乙城市的分厂加工成成品.现该厂接受了一批订货,要在100天内制成这批精密仪器.由于乙分厂每天可以加工完一件仪器,而甲分厂的半成品保证满足供应,所以这项订货任务恰好按期完成.今知每一批半成品从甲市运到乙市的运费为100元,而每个半成品在乙市储存一天的储存费为2元.问应分几批(批量相等),才能使总的花费(包括运输费及储存费)最省?
查看习题详情和答案>>
某上市股票在30天内每股的交易价格
(元)与时间
(天)所组成的有序数对
落在下图中的两条线段上,该股票在30天内的日交易量
(万股)与时间
(天)的部分数据如下表所示.
![]()
|
第t天 |
4 |
10 |
16 |
22 |
|
Q(万股) |
36 |
30 |
24 |
18 |
⑴根据提供的图象,写出该种股票每股交易价格
(元)与时间
(天)所满足的函数关系式;
⑵根据表中数据确定日交易量
(万股)与时间
(天)的一次函数关系式;
⑶在(2)的结论下,用
(万元)表示该股票日交易额,写出
关于
的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?
【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;
(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;
(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.
查看习题详情和答案>>
某市学校“减负”后,增加了学生的社会实践活动,该市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观两天,其余的每所学校只参观一天,则该植物园在30天中不同的安排方法的种数是
[ ]
A.![]()
B.![]()
C.![]()
D.![]()
| 第七天 | 4 | 10 | 16 | 22 |
| Q(万股) | 36 | 30 | 24 | 18 |
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系;
(3)用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少?
| 第t天 | 4 | 10 | 16 | 22 |
| Q(万股) | 36 | 30 | 24 | 18 |
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少? 查看习题详情和答案>>