摘要:已知.则不等式的解为 .
网址:http://m.1010jiajiao.com/timu3_id_4458245[举报]
已知是公差为d的等差数列,是公比为q的等比数列
(Ⅰ)若 ,是否存在,有?请说明理由;
(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;
(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
【解析】第一问中,由得,整理后,可得、,为整数不存在、,使等式成立。
(2)中当时,则
即,其中是大于等于的整数
反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)中设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
结合二项式定理得到结论。
解(1)由得,整理后,可得、,为整数不存在、,使等式成立。
(2)当时,则即,其中是大于等于的整数反之当时,其中是大于等于的整数,则,
显然,其中
、满足的充要条件是,其中是大于等于的整数
(3)设当为偶数时,式左边为偶数,右边为奇数,
当为偶数时,式不成立。由式得,整理
当时,符合题意。当,为奇数时,
由,得
当为奇数时,此时,一定有和使上式一定成立。当为奇数时,命题都成立
查看习题详情和答案>>