摘要:3.第1小题满分6分.第2小题满分10分. 已知四边形为直角梯形.平面.且 (理)若.求:(1)点的坐标, (2)异面直线所成的角. 求证:,(2)求异面直线与所成的角.
网址:http://m.1010jiajiao.com/timu3_id_4453902[举报]
(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设等比数列的前项和为,已知.
(1)求数列的通项公式;(2)在与之间插入个1,构成如下的新数列:,求这个数列的前项的和;、(3)在与之间插入个数,使这个数组成公差为的等差数列(如:在与之间插入1个数构成第一个等差数列,其公差为;在与之间插入2个数构成第二个等差数列,其公差为,…以此类推),设第个等差数列的和是. 是否存在一个关于的多项式,使得对任意恒成立?若存在,求出这个多项式;若不存在,请说明理由.
查看习题详情和答案>>
.(本题满分16分,其中第1小题4分,第2小题6分,第3小题6分,)
如图,已知椭圆,,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(1)求椭圆和双曲线的标准方程;
(2)设直线、的斜率分别为、,证明;
(3)是否存在常数,使得
恒成立?若存在,求的值;若不存在,请说明理由.
查看习题详情和答案>>
(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
设等比数列的前项和为,已知.
(1)求数列的通项公式;(2)在与之间插入个1,构成如下的新数列:,求这个数列的前项的和;、(3)在与之间插入个数,使这个数组成公差为的等差数列(如:在与之间插入1个数构成第一个等差数列,其公差为;在与之间插入2个数构成第二个等差数列,其公差为,…以此类推),设第个等差数列的和是. 是否存在一个关于的多项式,使得对任意恒成立?若存在,求出这个多项式;若不存在,请说明理由.
设等比数列的前项和为,已知.
(1)求数列的通项公式;(2)在与之间插入个1,构成如下的新数列:,求这个数列的前项的和;、(3)在与之间插入个数,使这个数组成公差为的等差数列(如:在与之间插入1个数构成第一个等差数列,其公差为;在与之间插入2个数构成第二个等差数列,其公差为,…以此类推),设第个等差数列的和是. 是否存在一个关于的多项式,使得对任意恒成立?若存在,求出这个多项式;若不存在,请说明理由.