摘要:15.∠A和∠C是矩形ABCD的一组对角.则①∠ A与∠C相等,②∠A与∠C互补,③∠A是直角,④∠C是直角.以上结论中.正确的有 ( ) A 1个 B 2个 C 3个 D 4个
网址:http://m.1010jiajiao.com/timu3_id_443567[举报]
如图,四边形ABCD是正方形,P是对角线BD上一点,过P点作直线MN和EF,分别平行于AB、BC,交两组对边于点M、N、E、F,则四边形PFDN、PEBM都是正方形,四边形PEAN、PMCF都是矩形,设正方形PEBM的边长为a,正方形PFDN
的边长为b(a<b).
(1)用代数式分别表示正方形PEBM和正方形PFDN的面积之和以及矩形PEAN与矩形PMCF的面积之和,并判定两个面积之和的大小.
(2)当点P在什么位置时,它们的面积之和相等?
(3)用含a、b的代数式表示S△EMD. 查看习题详情和答案>>
(1)用代数式分别表示正方形PEBM和正方形PFDN的面积之和以及矩形PEAN与矩形PMCF的面积之和,并判定两个面积之和的大小.
(2)当点P在什么位置时,它们的面积之和相等?
(3)用含a、b的代数式表示S△EMD. 查看习题详情和答案>>
如图,四边形ABCD是正方形,P是对角线BD上一点,过P点作直线MN和EF,分别平行于AB、BC,交两组对边于点M、N、E、F,则四边形PFDN、PEBM都是正方形,四边形PEAN、PMCF都是矩形,设正方形PEBM的边长为a,正方形PFDN
的边长为b(a<b).
(1)用代数式分别表示正方形PEBM和正方形PFDN的面积之和以及矩形PEAN与矩形PMCF的面积之和,并判定两个面积之和的大小.
(2)当点P在什么位置时,它们的面积之和相等?
(3)用含a、b的代数式表示S△EMD.
查看习题详情和答案>>
八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=
,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.
查看习题详情和答案>>
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=
| 2 |