摘要:30. 如图.平面直角坐标系中.四边形OABC为矩形.点A.B的坐标分别为.动点M.N分别从O.B同时出发.以每秒1个单位的速度运动.其中.点M沿OA向终点A运动.点N沿BC向终点C运动.过点N作NP⊥BC.交AC于P.连结MP. 已知动点运动了秒. (1)P点的坐标为( . ), (2)试求 △MPA面积的最大值.并求此时x的值. (3)请你探索:当x为何值时.△MPA是一个等腰三角形? 你发现了几种情况?写出你的研究成果.
网址:http://m.1010jiajiao.com/timu3_id_437053[举报]
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交
轴于D点,过点D作DF⊥AE于点F。
![]()
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。
查看习题详情和答案>>
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交
轴于D点,过点D作DF⊥AE于点F。
![]()
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。
查看习题详情和答案>>
(本小题满分7分)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),
PQ∥y轴与抛物线交于点Q.
【小题1】 (1)求经过B、E、C三点的抛物线的解析式;
【小题2】 (2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由; 查看习题详情和答案>>
PQ∥y轴与抛物线交于点Q.
【小题1】 (1)求经过B、E、C三点的抛物线的解析式;
【小题2】 (2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由; 查看习题详情和答案>>
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交
轴于D点,过点D作DF⊥AE于点F。

(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。 查看习题详情和答案>>
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。 查看习题详情和答案>>
(本小题满分7分)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),
PQ∥y轴与抛物线交于点Q.
【小题1】 (1)求经过B、E、C三点的抛物线的解析式;
【小题2】 (2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由; 查看习题详情和答案>>