摘要:如图.在平面直角坐标系中.一次函数y=kx+b的图象与反比例函数的图象相交于A.B两点.求: (1)根据图象写出A.B两点的坐标并分别求出反比例函数和一次函数的解析式, (2)根据图象写出:当x为何值时.一次函数值大于反比例函数值. 考点:反比例函数与一次函数的交点问题. 分析:(1)根据题意.可得出A.B两点的坐标.再将A.B两点的坐标代入y=kx+b与.即可得出解析式, (2)即求出一次函数图象在反比例函数图象的上方时.x的取值范围即可. 解答:解:(1)由图象可知:点A的坐标为(2.) 点B的坐标为 ∵反比例函数的图象经过点(2.) ∴m=1 ∴反比例函数的解析式为: ∵一次函数y=kx+b的图象经过点(2.)点B ∴ 解得:k=b=﹣ ∴一次函数的解析式为 (2)由图象可知:当x>2或﹣1<x<0时一次函数值大于反比例函数值 点评:本题考查了一次函数和反比例函数的交点问题.是基础知识要熟练掌握.
网址:http://m.1010jiajiao.com/timu3_id_435694[举报]
(2012•峨眉山市二模)如图,在平面直角坐标系中,已知点B(2
,0)、A(m,0)(0<m<
),以AB为边在x轴下方作正方形ABCD,
点E是线段OD与正方形ABCD的外接圆的交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)若
=
,试求经过B、F、O三点的抛物线l的解析式;
(3)在(2)的条件下,将抛物线l在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,若直线BE向上平移t个单位与新图象有两个公共点,试求t的取值范围.
查看习题详情和答案>>
| 2 |
| 2 |
(1)求证:BF=DO;
(2)若
| AE |
| DE |
(3)在(2)的条件下,将抛物线l在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,若直线BE向上平移t个单位与新图象有两个公共点,试求t的取值范围.
(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移
| 2 |
如图,在平面直角坐标系中,△ABC的各顶点都在格点上(即各点的坐标均为整数)
,点A1的坐标为(2,1),将△ABC进行平移,得到△A1B1C1,且点A的对应点为点A1.
(1)在图中画出平移后的图形;
(2)分别写出点B、C的对应点B1、C1的坐标;
(3)写出从△ABC到△A1B1C1的平移过程(按先左右、后上下的顺序).
查看习题详情和答案>>
(1)在图中画出平移后的图形;
(2)分别写出点B、C的对应点B1、C1的坐标;
(3)写出从△ABC到△A1B1C1的平移过程(按先左右、后上下的顺序).
(2012•西湖区一模)如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4),点C,
D在x轴上,C(t,0),D(t+3,0)(0<t≤5),过点D作x轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F
(1)请用含t的代数式表示线段AE与EF的长;
(2)若当△EFG的面积为
时,点G恰在y=
的图象上,求k的值;
(3)若存在点Q(0,2t)与点R,其中点R在(2)中的y=
的图象上,以A,C,Q,R为顶点的四边形是平行四边形,求R点的坐标.
查看习题详情和答案>>
(1)请用含t的代数式表示线段AE与EF的长;
(2)若当△EFG的面积为
| 12 |
| 5 |
| k |
| x |
(3)若存在点Q(0,2t)与点R,其中点R在(2)中的y=
| k |
| x |
| 1 |
| 2 |
(1)D点的坐标是
(3,
m)
| 3 |
| 2 |
(3,
m)
(用含m的代数式表示)| 3 |
| 2 |
(2)当△ABC为等腰三角形时,作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的表达式;
(3)在△ABC为等腰三角形的条件下,点P为y轴上任一点,连接BP、DP,当BP+DP的值最小时,点P的坐标为
(0,m)
(0,m)
.