摘要:如图.在平面直角坐标系中.四边形OABC是菱形.点C的坐标为(4.0).∠AOC=60°.垂直于x轴的直线l从y轴出发.沿x轴正方向以每秒1个单位长度的速度向右平移.设直线l与菱形OABC的两边分别交于点M.N.若△OMN的面积为S.直线l的运动时间为t 秒.则能大致反映S与t的函数关系的图象是( ) A. B. C. D. 考点:动点问题的函数图象,正比例函数的图象,二次函数的图象,三角形的面积,含30度角的直角三角形,勾股定理,菱形的性质. 专题:计算题. 分析:过A作AH⊥X轴于H.根据勾股定理和含30度角的直角三角形的性质求出AH.根据三角形的面积即可求出答案. 解答:解:过A作AH⊥X轴于H. ∵OA=OC=4.∠AOC=60°. ∴OH=2. 由勾股定理得:AH=2. ①当0≤t≤2时.ON=t.MN=t.S=ON•MN=t2, ②<t≤6时.ON=t.S=ON•2=t. 故选C. 点评:本题主要考查对动点问题的函数图象.勾股定理.三角形的面积.二次函数的图象.正比例函数的图象.含30度角的直角三角形的性质.菱形的性质等知识点的理解和掌握.能根据这些性质进行计算是解此题的关键.用的数学思想是分类讨论思想.
网址:http://m.1010jiajiao.com/timu3_id_435680[举报]
(2012•峨眉山市二模)如图,在平面直角坐标系中,已知点B(2
,0)、A(m,0)(0<m<
),以AB为边在x轴下方作正方形ABCD,
点E是线段OD与正方形ABCD的外接圆的交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)若
=
,试求经过B、F、O三点的抛物线l的解析式;
(3)在(2)的条件下,将抛物线l在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,若直线BE向上平移t个单位与新图象有两个公共点,试求t的取值范围.
查看习题详情和答案>>
| 2 |
| 2 |
(1)求证:BF=DO;
(2)若
| AE |
| DE |
(3)在(2)的条件下,将抛物线l在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新图象,若直线BE向上平移t个单位与新图象有两个公共点,试求t的取值范围.
(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移
| 2 |
如图,在平面直角坐标系中,△ABC的各顶点都在格点上(即各点的坐标均为整数)
,点A1的坐标为(2,1),将△ABC进行平移,得到△A1B1C1,且点A的对应点为点A1.
(1)在图中画出平移后的图形;
(2)分别写出点B、C的对应点B1、C1的坐标;
(3)写出从△ABC到△A1B1C1的平移过程(按先左右、后上下的顺序).
查看习题详情和答案>>
(1)在图中画出平移后的图形;
(2)分别写出点B、C的对应点B1、C1的坐标;
(3)写出从△ABC到△A1B1C1的平移过程(按先左右、后上下的顺序).
(2012•西湖区一模)如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4),点C,
D在x轴上,C(t,0),D(t+3,0)(0<t≤5),过点D作x轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F
(1)请用含t的代数式表示线段AE与EF的长;
(2)若当△EFG的面积为
时,点G恰在y=
的图象上,求k的值;
(3)若存在点Q(0,2t)与点R,其中点R在(2)中的y=
的图象上,以A,C,Q,R为顶点的四边形是平行四边形,求R点的坐标.
查看习题详情和答案>>
(1)请用含t的代数式表示线段AE与EF的长;
(2)若当△EFG的面积为
| 12 |
| 5 |
| k |
| x |
(3)若存在点Q(0,2t)与点R,其中点R在(2)中的y=
| k |
| x |
| 1 |
| 2 |
(1)D点的坐标是
(3,
m)
| 3 |
| 2 |
(3,
m)
(用含m的代数式表示)| 3 |
| 2 |
(2)当△ABC为等腰三角形时,作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的表达式;
(3)在△ABC为等腰三角形的条件下,点P为y轴上任一点,连接BP、DP,当BP+DP的值最小时,点P的坐标为
(0,m)
(0,m)
.