摘要:4.土豆在纯空气中贮藏一周.然后在纯氮气中贮藏一周.最后又置于纯空气中贮藏.在实验中测定了单位时间释放的.实验结果如下图17-2所示.在第三周产生和释放可能来源于( ) 图17-2 A.乙醇 B.乙醛 C.乳酸 D.NADPH

网址:http://m.1010jiajiao.com/timu3_id_38726[举报]

工业合成氨与制备硝酸一般可连续生产,流程如图:
精英家教网
(1)工业生产时,制取氢气的一个反应为:CO(g)+H2O(g)?CO2(g)+H2(g).t℃时,往10L密闭容器中充入2mol CO和3mol水蒸气.反应建立平衡后,体系中c(H2)=0.12mol?L-1.则该温度下此反应的平衡常数K=
 
(填计算结果).
(2)合成塔中发生反应N2(g)+3H2(g)?2NH3(g)△H<0.下表为不同温度下该反应的平衡常数.由此可推知,表中T1
 
300℃(填“>”、“<”或“=”).
T/℃ T1 300 T2
K 1.00×107 2.45×105 1.88×103
(3)氨气在纯氧中燃烧生成一种单质和水,科学家利用此原理,设计成“氨气-氧气”燃料电池,则通入氨气的电极是
 
(填“正极”或“负极”);碱性条件下,该电极发生反应的电极反应式为
 

(4)用氨气氧化可以生产硝酸,但尾气中的NOx会污染空气.目前科学家探索利用燃料气体中的甲烷等将氮的氧化物还原为氮气和水,反应机理为:
CH4(g)+4NO2(g)═4NO(g)+CO2(g)+2H2O(g)△H=-574kJ?mol-1
CH4(g)+4NO(g)═2N2(g)+CO2(g)+2H2O(g)△H=-1160kJ?mol-1
则甲烷直接将NO2还原为N2的热化学方程式为
 

(5)某研究小组在实验室以“Ag-ZSM-5”为催化剂,测得将NO转化为N2的转化率随温度变化情况如下图.据图分析,若不使用CO,温度超过775℃,发现NO的转化率降低,其可能的原因为
 
;在
n(NO)
n(CO)
=1的条件下,应控制的最佳温度在
 
左右.
精英家教网
查看习题详情和答案>>
X、Y、Z为周期表中常见元素,原子序数递增,X、Y原子的最外层电子数是其电子层数的2倍,Z单质是生产生活中用量最大的金属.
(1)X、Y的原子可构成一种物质,该物质与某能引起温室效应的气体结构相同;该物质的电子式是

(2)下列含氧酸根离子的化学式书写不正确的是
ae
ae
(填序号).
a.XO3-    b.XO32-    c.YO32-    d.Y2O32-    e.YO3-   f.YO42-
(3)Z单质与其它化合物可满足如图所示转化关系:

①C溶液在储存时应加入少量Z,其理由是(用文字和离子方程式回答)
加入少量铁,防止Fe2+被氧化为Fe3+,2Fe3++Fe═3Fe2+
加入少量铁,防止Fe2+被氧化为Fe3+,2Fe3++Fe═3Fe2+

②将5~6滴B的饱和溶液滴入沸水中,可得到红褐色液体,该液体能产生丁达尔效应.该反应的离子方程式为
Fe3++3H2O(沸水)═Fe(OH)3(胶体)+3H+
Fe3++3H2O(沸水)═Fe(OH)3(胶体)+3H+

(4)Y的最高价含氧酸是重要的化工产品.
①已知YO2被空气氧化,每生成1mol气态YO3,放出98.3kJ热量.该反应的热化学方程式是
SO2(g)+
1
2
O2(g)═SO3(g)△H=-98.3kJ?mol-1
SO2(g)+
1
2
O2(g)═SO3(g)△H=-98.3kJ?mol-1

②实验测得相同条件下一定量的Y单质分别在空气和在氧气中充分燃烧后产物的成分(体积分数)如下表.
YO2 YO3
空气 94%-95% 5%-6%
氧气 97%-98% 2%-3%
Y在纯氧中燃烧的产物中YO3含量比在空气中燃烧YO3含量少,试分析其原因
纯氧中O2的浓度大,反因应速率快,单位时间内放热多,体系温度高,平衡向SO3分解的方向移动,SO3含量低
纯氧中O2的浓度大,反因应速率快,单位时间内放热多,体系温度高,平衡向SO3分解的方向移动,SO3含量低
查看习题详情和答案>>
(2009?西城区一模)X、Y、Z为周期表中前20号主族元素,原子序数递增,X、Y原子的最外层电子数是其电子层数的2倍,Z是人体含量最高的金属元素.
(1)下列含氧酸根化学式书写不正确的是
a
a
(填序号).
a.XO3-b.XO32-c.YO32-d.Y2O32-
(2)X、Y的原子可构成只含极性键的非极性分子,它的电子式是
,空间构型是
直线型
直线型

(3)Y的最高价含氧酸是重要的化工产品.
①已知YO2被空气氧化,每生成1mol气态YO3,放出98.3kJ热量,该反应的热化学方程式是
SO2(g)+1/2O2(g)═SO3(g)△H=-98.3KJ/mol
SO2(g)+1/2O2(g)═SO3(g)△H=-98.3KJ/mol

②实验测得相同条件下一定量的Y单质分别在空气和在氧气中充分燃烧后产物的成分(体积分数)如表.
  YO2 YO3
空气 94%~95% 5%~6%
氧气 97%~98% 2%~3%
Y在纯氧中燃烧产物里YO3含量比空气中少的原因是
纯氧中O2浓度大,单位时间内放热多,体系温度高,平衡向SO3分解的方向移动
纯氧中O2浓度大,单位时间内放热多,体系温度高,平衡向SO3分解的方向移动

③天然ZYO4既可用于制备Y的氧化物又可用于制水泥.ZYO4与X单质在高温下反应,得到两种常见气体.每消耗1molX单质,有4mol电子转移,该反应的化学方程式是
2CaSO4+C═2CaO+CO2↑+2SO2
2CaSO4+C═2CaO+CO2↑+2SO2

(4)为了测定某水泥样品成分,称取10.0g样品,将其中的Z元素转化为ZX2O4沉淀,将沉淀用稀酸处理得H2X2O4溶液,取该溶液体积的1/100,用KMnO4溶液滴定(氧化产物为XO2,还原产物为Mn2+),结果用去0.0200mol?L-1的KMnO4溶液24.00mL.该样品中Z的氧化物的质量分数是
67.2%
67.2%
查看习题详情和答案>>
(2011?石景山区一模)工业合成氨与制备硝酸一般可连续生产,流程如下:

(1)工业生产时,制取氢气的一个反应为:CO+H2O(g)?CO2+H2.t℃时,往1L密闭容器中充入0.2mol CO和0.3mol水蒸气.反应建立平衡后,体系中c(H2)=0.12mol?L-1.该温度下此反应的平衡常数K=
1
1
(填计算结果).
(2)合成培中发生反应N2(g)+3H2(g)?2NH3(g)△H<0.下表为不同温度下该反应的平衡常数.由此可推知,表中T1
300℃(填“>”、“<”或“=”).
T/℃ T1 300 T2
K 1.00×107 2.45×105 1.88×103
(3)N2和H2在铁作催化剂作用下从145℃就开始反应,不同温度下NH3产率如图所示.温度高于900℃时,NH3产率下降的原因
温度高于900℃时,平衡向左移动
温度高于900℃时,平衡向左移动

(4)在上述流程图中,氧化炉中发生反应的化学方程式为
4NH3+5O2
催化剂
.
4NO+6H2O
4NH3+5O2
催化剂
.
4NO+6H2O

(5)硝酸厂的尾气含有氮的氧化物,如果不经处理直接排放将污染空气.目前科学家探索利用燃料气体中的甲烷等将氮的氧化物还原为氮气和水,反应机理为:
CH4(g)+4NO2(g)═4NO(g)+CO2(g)+2H2O(g)△H=-574kJ?mol-1
CH4(g)+4NO(g)═2N2(g)+CO2(g)+2H2O(g)△H=-1160kJ?mol-1
则甲烷直接将N02还原为N2的热化学方程式为:
CH4(g)+2NO2(g)═N2(g)+CO2(g)+2H2O(g)△H=-867kJ?mol-1
CH4(g)+2NO2(g)═N2(g)+CO2(g)+2H2O(g)△H=-867kJ?mol-1

(6)氨气在纯氧中燃烧,生成一种单质和水,试写出该反应的化学方程式
4NH3+5O2
 点燃 
.
 
4N2+6H2O
4NH3+5O2
 点燃 
.
 
4N2+6H2O
,科学家利用此原理,设计成氨气一氧气燃料电池,则通入氨气的电极是
负极
负极
 (填“正极”或“负极”);碱性条件下,该电极发生反应的电极反应式为
2NH3-6e-+6OH-→N2+6H2O
2NH3-6e-+6OH-→N2+6H2O
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网