摘要: How would you understand“fish scientists are now lending Thorrold their ears ? A. They are very interested in Thorrold’s research findings. B. They want to know where they can find fish. C. They lend their fish for chemical studies. D. They wonder if Thorrold can find growth rings from their ears. D Students must apply for a place before attending any class. Applications, either by post or in person, are dealt with strictly in the order they are received at the Adult Education Office. You can apply: BY POST---use the card provided with the exact fee. You will be accepted for the course unless it is full, in which case we will let you know. You should provide a stamped addressed envelop if you want to know by post the result of your application. Receipts will normally be given out at the first class. IN PERSON---call at the Adult Education Office (ground floor. C Block) between about 9∶00 a.m. and 3∶30 p.m. ( 2∶30 p.m. on Friday), or at the College Reception Desk at the other times (in the evenings until about 7∶30 p.m.---not Friday). Students should note that popular classes may be full well before the course is to start, so that early application is strongly advised to avoid disappointment. For the AUTUMN TERM, applications will be accepted post or in person from 1st August. For the SPRING TERM, applications will be accepted from 1st December. For the SUMMER TERM, applications will be accepted from 1st April.

网址:http://m.1010jiajiao.com/timu3_id_3027325[举报]

Fish have ears. Really. They’re quite small and have no opening to the outside world carrying sound through the body. For the past seven years, Simon Thorrold, a university professor, has been examining fish ears, small round ear bones called otoliths.

As fish grow, so do their otoliths. Each day, their otoliths gain a ring of calcium carbonate (碳酸钙). By looking through a microscope (显微镜) and counting (数) these rings, Thorrold can determine the exact age of a young fish. As a fish gets older, its otoliths no longer get daily rings. Instead, they get yearly rings, which can also be counted, giving information about the fish’s age, just like the growth rings of a tree.

Ring counting is nothing new to fish scientists. But Thorrold has turned to a new direction. They’re examining the chemical elements (元素) of each otolith ring.

The daily ring gives us the time, but chemistry tells us about the environment in which the fish swam on any given day. These elements tell us about the chemistry of the water that the fish was in. It also says something about water temperature, which determines how much of these elements will gather within each otolith ring.

Thorrold can tell, for example, if a fish spent time in the open ocean before entering the less salty water of coastal areas. He can basically tell where fish are spending their time at any given stage of history.

In the case of the Atlantic croaker, a popular saltwater food fish, Thorrold and his assistant have successfully followed the travelling of young fish from mid-ocean to the coast, a journey of many hundreds of miles.

This is important to managers in the fish industry, who know nearly nothing about the whereabouts (行踪) of the young fish for most food fish in the ocean. Eager to learn about his technology, fish scientists are now lending Thorrold their ears.

1.What can we learn about fish ears from the text?

A. They are small soft rings.                              B. They are not seen from the outside.

C. They are openings only on food fish.                     D. They are not used to receive sound.

2.Why does the writer compare the fish to trees?

A. Trees gain a growth ring each day.

B. Trees also have otoliths.

C. Their growth rings are very small.

D. They both have growth rings.

3.Why is it important to study the chemistry of otolith rings?

A. The elements of the otoliths can tell the history of the sea.

B. Chemical contents (含量) of otoliths can tell how fast fish can swim.

C. We can know more about fish and their living environment.

D. Scientists can know exactly how old a fish is.

4.How would you understand “fish scientists are now lending their ears”?

A. They are very interested in Thorrold’s research findings.

B. They want to know where they can find fish.

C. They lend their fish for chemical studies.

D. They wonder if Thorrold can find growth rings from their ears.

查看习题详情和答案>>
阅读理解
     Fish have ears. Really. They're quite small and have no opening to the outside world carrying sound
through the body. For the past seven years, Simon Thorrold, a university professor, has been examining
fish ears, small round ear bones called otoliths.
   As fish grow, so do their otoliths. Each day, their otoliths gain a ring of calcium carbonate (碳酸钙).
By looking through a microscope (显微镜) and counting (数) these rings, Thorrold can determine the
exact age of a young fish. As a fish gets older, its otoliths no longer get daily rings. Instead, they get yearly
rings, which can also be counted, giving information about the fish's age, just like the growth rings of a
tree.
Ring counting is nothing new to fish scientists. But Thorrold has turned to a new direction. They're
examining the chemical elements (元素) of each otolith ring.
     The daily ring gives us the time, but chemistry tells us about the environment in which the fish swam on
any given day. These elements tell us about the chemistry of the water that the fish was in. It also says
something about water temperature, which determines how much of these elements will gather within
each otolith ring.
   Thorrold can tell, for example, if a fish spent time in the open ocean before entering the less salty water
of coastal areas. He can basically tell where fish are spending their time at any given stage of history.
   In the case of the Atlantic croaker, a popular saltwater food fish, Thorrold and his assistant have
successfully followed the travelling of young fish from mid-ocean to the coast, a journey of many
hundreds of miles.
   This is important to managers in the fish industry, who know nearly nothing about the whereabouts (行踪) of the young fish for most food fish in the ocean. Eager to learn about his technology, fish scientists
are now lending Thorrold their ears.

1. What can we learn about fish ears from the text? 

A. They are small soft rings.            
B. They are not seen from the outside. 
C. They are openings only on food fish.  
D. They are not used to receive sound.

2. Why does the writer compare the fish to trees? 

A. Trees gain a growth ring each day. 
B. Trees also have otoliths. 
C. Their growth rings are very small. 
D. They both have growth rings.

3. Why is it important to study the chemistry of otolith rings? 

A. The elements of the otoliths can tell the history of the sea. 
B. Chemical contents (含量) of otoliths can tell how fast fish can swim. 
C. We can know more about fish and their living environment. 
D. Scientists can know exactly how old a fish is.

4. How would you understand "fish scientists are now lending their ears"?

A. They are very interested in Thorrold's research findings.
B. They want to know where they can find fish.
C. They lend their fish for chemical studies.
D. They wonder if Thorrold can find growth rings from their ears.
查看习题详情和答案>>

Fish Ears Tell Fish Tales
Fish have ears. Really. They’re quite small and have no opening to the outside world carrying sound through the body. For the past seven years, Simon Thorrold, a university professor, has been examining fish ears, small round ear bones called otoliths (耳石).
As fish grow, so do their otoliths. Each day, their otoliths gain a ring of calcium carbonate (碳酸钙). By looking through a microscope and counting these rings, Thorrold can determine the exact age of a young fish. As a fish gets older, its otoliths no longer get daily rings. Instead, they get yearly rings, which can also be counted, giving information about the fish’s age, just like the growth rings of a tree.
Ring counting is nothing new to fish scientists. But Thorrold has turned to a new direction. They’re examining the chemical elements (元素) of each otolith ring.
The daily ring gives us the time, but chemistry tells us about the environment in which the fish swam on any given day. These elements tell us about the chemistry of the water that the fish was in. It also says something about water temperature, which determines how much of these elements will gather within each otolith ring.
Thorrold can tell, for example, if a fish spent time in the open ocean before entering the less salty water of coastal areas. He can basically tell where fish are spending their time at any given stage of history.
In the case of the Atlantic croaker, a popular saltwater food fish, Thorrold and his assistant have successfully followed the travelling of young fish from mid-ocean to the coast, a journey of many hundreds of miles.
This is important to managers in the fish industry, who know nearly nothing about the whereabouts of the young fish for most food fish in the ocean. Eager to learn about his technology, fish scientists are now lending Thorrold their ears.

  1. 1.

    What can we learn about fish ears from the text?

    1. A.
      They are small soft rings.
    2. B.
      They are not seen from the outside.
    3. C.
      They are openings only on food fish.
    4. D.
      They are not used to receive sound.
  2. 2.

    Why does the writer compare the fish to trees?

    1. A.
      Trees gain a growth ring each day.
    2. B.
      Trees also have otoliths.
    3. C.
      Their growth rings are very small.
    4. D.
      They both have growth rings.
  3. 3.

    Why is it important to study the chemistry of otolith rings?

    1. A.
      The elements of the otoliths can tell the history of the sea.
    2. B.
      Chemical contents of otoliths can tell how fast fish can swim.
    3. C.
      We can know more about fish and their living environment.
    4. D.
      Scientists can know exactly how old a fish is.
  4. 4.

    How would you understand “fish scientists are now lending their ears”?

    1. A.
      They are very interested in Thorrold’s research findings.
    2. B.
      They want to know where they can find fish.
    3. C.
      They lend their fish for chemical studies.
    4. D.
      They wonder if Thorrold can find growth rings from their ears.
查看习题详情和答案>>

Fish Ears Tell Fish Tales

  Fish have ears. Really. They’re quite small and have no opening to the outside world carrying sound through the body. For the past seven years, Simon Thorrold, a university professor, has been examining fish ears, small round ear bones called otoliths (耳石).

  As fish grow, so do their otoliths. Each day, their otoliths gain a ring of calcium carbonate (碳酸钙). By looking through a microscope and counting these rings, Thorrold can determine the exact age of a young fish. As a fish gets older, its otoliths no longer get daily rings. Instead, they get yearly rings, which can also be counted, giving information about the fish’s age, just like the growth rings of a tree.

  Ring counting is nothing new to fish scientists. But Thorrold has turned to a new direction. They’re examining the chemical elements (元素) of each otolith ring.

  The daily ring gives us the time, but chemistry tells us about the environment in which the fish swam on any given day. These elements tell us about the chemistry of the water that the fish was in. It also says something about water temperature, which determines how much of these elements will gather within each otolith ring.

  Thorrold can tell, for example, if a fish spent time in the open ocean before entering the less salty water of coastal areas. He can basically tell where fish are spending their time at any given stage of history.

  In the case of the Atlantic croaker, a popular saltwater food fish, Thorrold and his assistant have successfully followed the travelling of young fish from mid-ocean to the coast, a journey of many hundreds of miles.

  This is important to managers in the fish industry, who know nearly nothing about the whereabouts of the young fish for most food fish in the ocean. Eager to learn about his technology, fish scientists are now lending Thorrold their ears.

What can we learn about fish ears from the text?

 A. They are small soft rings.

 B. They are not seen from the outside.

 C. They are openings only on food fish.

 D. They are not used to receive sound.

Why does the writer compare the fish to trees?

 A. Trees gain a growth ring each day.

 B. Trees also have otoliths.

 C. Their growth rings are very small.

 D. They both have growth rings.

Why is it important to study the chemistry of otolith rings?

 A. The elements of the otoliths can tell the history of the sea.

 B. Chemical contents of otoliths can tell how fast fish can swim.

 C. We can know more about fish and their living environment.

 D. Scientists can know exactly how old a fish is.

How would you understand “fish scientists are now lending their ears”?

 A. They are very interested in Thorrold’s research findings.

 B. They want to know where they can find fish.

 C. They lend their fish for chemical studies.

 D. They wonder if Thorrold can find growth rings from their ears. 

查看习题详情和答案>>

Fish Ears Tell Fish Tales
  Fish have ears. Really. They’re quite small and have no opening to the outside world carrying sound through the body. For the past seven years, Simon Thorrold, a university professor, has been examining fish ears, small round ear bones called otoliths (耳石).
  As fish grow, so do their otoliths. Each day, their otoliths gain a ring of calcium carbonate (碳酸钙). By looking through a microscope and counting these rings, Thorrold can determine the exact age of a young fish. As a fish gets older, its otoliths no longer get daily rings. Instead, they get yearly rings, which can also be counted, giving information about the fish’s age, just like the growth rings of a tree.
  Ring counting is nothing new to fish scientists. But Thorrold has turned to a new direction. They’re examining the chemical elements (元素) of each otolith ring.
  The daily ring gives us the time, but chemistry tells us about the environment in which the fish swam on any given day. These elements tell us about the chemistry of the water that the fish was in. It also says something about water temperature, which determines how much of these elements will gather within each otolith ring.
  Thorrold can tell, for example, if a fish spent time in the open ocean before entering the less salty water of coastal areas. He can basically tell where fish are spending their time at any given stage of history.
  In the case of the Atlantic croaker, a popular saltwater food fish, Thorrold and his assistant have successfully followed the travelling of young fish from mid-ocean to the coast, a journey of many hundreds of miles.
  This is important to managers in the fish industry, who know nearly nothing about the whereabouts of the young fish for most food fish in the ocean. Eager to learn about his technology, fish scientists are now lending Thorrold their ears.
【小题1】What can we learn about fish ears from the text?

A.They are small soft rings.
B.They are not seen from the outside.
C.They are openings only on food fish.
D.They are not used to receive sound.
【小题2】Why does the writer compare the fish to trees?
A.Trees gain a growth ring each day.
B.Trees also have otoliths.
C.Their growth rings are very small.
D.They both have growth rings.
【小题3】Why is it important to study the chemistry of otolith rings?
A.The elements of the otoliths can tell the history of the sea.
B.Chemical contents of otoliths can tell how fast fish can swim.
C.We can know more about fish and their living environment.
D.Scientists can know exactly how old a fish is.
【小题4】How would you understand “fish scientists are now lending their ears”?
A.They are very interested in Thorrold’s research findings.
B.They want to know where they can find fish.
C.They lend their fish for chemical studies.
D.They wonder if Thorrold can find growth rings from their ears.

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网