广东仲元中学2009届高三物理综合模拟(信息热点二)

90分钟训练

一、填空、实验题、论述题:本题共3个小题。满分110分。

1.(3-4模块)

(1)( 4分,该题有多个正确答案,少选得2分,错选得0分)下列说法中正确的有

A.一单摆在周期性外力作用下做受迫振动,其振动周期与单摆的摆长有关 

B.变化的电场一定产生变化的磁场,变化的磁场一定产生变化的电场       

C.相对论认为:真空中的光速在不同惯性参照系中都是相同的  

D.医院里用于检测的彩超的原理是:向病人体内发射超声波,经血液反射后被接收,测出反射波的频率变化,就可知血液的流速.这一技术应用了多普勒效应

试题详情

(2)(3分) 一列向右传播的简谐横波在某时刻的波形图如图所示。波速大小为0.6m/s,P质点的横坐标x = 0.96m。波源O点刚开始振动时的振动方向__   ___(填“y轴正方向”或“y轴负方向”),波的周期为__   ___s。从图中状态为开始时刻,质点P经过__  __s时间第二次达到波峰。

试题详情

(3)(5分)如图所示,一个横截面为直角三角形的三棱镜,ÐA=30°,ÐC=90°.三棱镜材料的折射率是 n=。一条与BC面成θ=30°角的光线射向BC面,经过AC边一次反射从AB边射出。求从AB边射出光线与AB边的夹角。

 

 

 

 

 

 

试题详情

2.(1)(4分)在“探究小车速度随时间变化的关系”的实验中,所用交流电的频率为50Hz。某次实验中得到的一条纸带如图所示,从比较清晰的点起,每五个点取一个点作为计数点,分别标明0、1、2、3、4。量得x1=30.0mm,x2=36.0mm,x3=42.0mm,x4=48.0mm,则打点2时小车的瞬时速度为       m/s和小车的加速度为       m/s2 。(实验结果保留三位有效数字)

试题详情

(2)(4分)某同学在“研究小车的加速度与外力关系”的探究实验中,使用了光电门。他将光电门固定在轨道上的某点B,用不同重力的物体拉小车,但每次小车从同一位置A由静止释放,测出对应不同外力时小车上遮光板通过光电门的时间△t,然后经过数据分析,得出F反比于△t2。则他就得出物体的加速度正比于外力的结论。请简要说明该同学这样做的理由。

 

 

试题详情

3(1)(4分)如图是多用表的刻度盘,当选用量程为50mA的电流挡测量电流时,表针指于图示位置,则所测电流为__   ___mA;若选用倍率为“×100”的电阻挡测电阻时,表针也指示在图示同一位置,则所测电

试题详情

阻的阻值为___  __Ω。如果要用此多用表测量一个约2.0×102Ω的电阻,为了使测量比较精确,应选的欧姆挡是__  _(选填“×10”、“×100”或“×1k”)。换挡结束后,实验操作上首先要进行的步骤是__     __。

(2)(8分)为测定某电源内阻r和一段金属电阻丝单位长度的电阻R0,设计如图所示的电路。ab是一段粗细均匀的金属电阻丝,R是阻值为2Ω的保护电阻,电源电动势为6V,电流表内阻不计,示数用I表示。滑动片P与电阻丝有良好接触, aP长度用Lx表示,其它连接导线电阻不计。实验时闭合电键,调节P的位置,将Lx和与之对应的I数据记录在下表。

实验次数

1

2

3

4

5

Lx(m)

试题详情

0.10

试题详情

0.20

试题详情

0.30

试题详情

0.40

试题详情

0.50

I(A)

试题详情

1.94

试题详情

1.30

试题详情

1.20

试题详情

1.02

试题详情

0.88

1/I(A-1

试题详情

0.52

试题详情

0.77

试题详情

0.83

试题详情

0.98

试题详情

1.14

试题详情

试题详情

 

 

 

 

 

 

 

①画出1/I-Lx图象;

②根据所画图线,写出金属丝的电阻与其长度的函数关系式:            

③从图中根据截距和斜率,求出该电源内阻r为____   _____Ω;该金属电阻丝单位长度的电阻R0为____        __Ω/m.

 

 

 

 

 

 

 

 

 

试题详情

4(16).如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为,物块飞离桌面后由P点沿切线落入圆轨道。 g=10m/s2,求:

试题详情

   (2)判断m2能否沿圆轨道到达M点。

   (3)释放后m2运动过程中克服摩擦力做的功

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

5(16).如图所示,A为位于一定高度处的质量为、带电荷量为的微粒,B为位于水平地面上的质量为M的用特殊材料制成的长方形空心盒子,盒子与地面间的动摩擦因数=0.2,盒内存在着竖直向上的匀强电场,场强大小,盒外存在着竖直向下的匀强电场,场强大小也为E,盒的上表面开有一系列略大于微粒的小孔,孔间距满足一定的关系,使得微粒进出盒子的过程中始终不与盒子接触.当微粒A以1m/s的速度从孔1进入盒子的瞬间,盒子B恰以v1=0.4m/s的速度向右滑行.设盒子足够长,取重力加速度g=10m/s2,不计微粒的重力,微粒恰能顺次从各个小孔进出盒子.试求:

(1) 从微粒第一次进入盒子至盒子停止运动的过程中,盒子通过的总路程;

(2) 微粒A从第一次进入盒子到第二次进入盒子所经历的时间;

(3) 盒子上至少要开多少个小孔,才能保证微粒始终不与盒子接触。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

5(19分).磁悬浮列车是一种高速交通工具,它具有两个重要系统:一个是悬浮系统,另一个是驱动系统。驱动系统的简化模型如下:左图是实验车与轨道示意图,右图是固定在实验车底部的金属框与轨道间的运动磁场的示意图。水平地面上有两根很长的平行直导轨,导轨间有垂直于水平面的等间距的匀强磁场(每个磁场的宽度与金属框的宽度相同),磁感应强度B1、B2大小相同,相邻磁场的方向相反,所有磁场同时以恒定速度v0沿导轨方向向右运动,这时实验车底部的金属框将会受到向右的磁场力,带动实验车沿导轨运动。

 

 

 

 

 

试题详情

设金属框总电阻R=1.6Ω,垂直于导轨的边长L=0.20m,实验车与金属框的总质量m=2.0kg,磁感应强度B1=B2=B=1.0T,磁场运动速度v0=10m/s。回答下列问题:

⑴设t=0时刻,实验车的速度为零,求此时金属框受到的磁场力的大小和方向;

试题详情

⑵已知磁悬浮状态下,实验车运动时受到的阻力恒为f1=0.20N,求实验车的最大速率vm

试题详情

⑶若将该实验车A与另外一辆质量相等但没有驱动装置的磁悬浮实验车P挂接,设A与P挂接后共同运动所受阻力恒为f2=0.50N。A与P挂接并经过足够长时间后已达到了最大速度,这时撤去驱动磁场,保留磁悬浮状态,A与P所受阻力f2保持不变,那么撤去驱动磁场后A和P还能滑行多远?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

6.(19分)如图所示,水平面上OA部分粗糙,其他部分光滑。轻弹簧一端固定,另一端与质量为M的小滑块连接,开始时滑块静止在O点,弹簧处于原长。一质量为m的子弹以大小为v的速度水平向右射入滑块,并留在滑块中,子弹打击滑块的时间极短,可忽略不计。之后,滑块向右运动并通过A点,返回后恰好停在出发点O处。求:

    (1)子弹打击滑块结束后的瞬间,滑块和子弹的共同速度大小;

(2)试简要说明滑块从O到A及从A到O两个过程中速度大小的变化情况,并计算滑块滑行过程中弹簧弹性势能的最大值;

    (3)滑块停在O点后,另一颗质量也为m的子弹以另一速度水平向右射入滑块并停留在滑块中,此后滑块运动过程中仅两次经过O点,求第二颗子弹的入射速度u的大小范围。

 

试题详情

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

1.(3-4模块) (1)CD  (2)y的负方向(1分)、0.4(1分)、1.9(1分)

(3)解:a.由折射定律:  

在BC界面:sin60°=sinγ  ①(1分)          γ=300°                          

∵sinC=     ②(1分)

∴光线在AC界面发生反射再经AB界面折射 (1分)

sin30°=sinγ/             ③(1分)

γ/=60°  则射出光线与AB面的夹角  β=90°-γ/=30°  ④(1分)            

 

2.(1)v2=0.390m/s(2分) ,a=0.600 m/s2(2分)(说明:取两位有效数字共扣1分)

(2),----1分   ------1分--------1分

 

若F反比于△t-2,则加速度正比于外力。

 

15.(1)30.5-30.9 mA;1.5×103 Ω。×10 ,欧姆调零。

(2)①如图;         (2分)

     ②(A-1)                (2分)

     ③ 0.10-0.14Ω (2分)、9.00-9.60Ω/m(2分)

 

 

3、(16分)(1)(5分)设物块块由D点以初速做平抛,落到P点时其竖直速度为

                 得

       平抛用时为t,水平位移为s,

       在桌面上过B点后初速

       BD间位移为     则BP水平间距为

   (2)(5分)若物块能沿轨道到达M点,其速度为

      

       轨道对物块的压力为FN,则

解得   即物块不能到达M点

   (3)(6分)设弹簧长为AC时的弹性势能为EP,物块与桌面间的动摩擦因数为

       释放      释放

       且

       在桌面上运动过程中克服摩擦力做功为Wf

       则   可得

4.17. (共14分)解:(1)微粒在盒子内、外运动时,盒子的加速度a=μMg/M=μg=0.2×10 m/s2=2 m/s2

盒子全过程做匀减速直线运动,所以通过的总路程是:(4分)

(2)A在盒子内运动时,   方向以向上为正方向

由以上得  a=qE/m=1×10-6×1×103/1×10-5 m/s2=1×102 m/s2 (2分)

A在盒子外运动时,   则a=qE/m=1×102 m/s2  方向向下

A在盒子内运动的时间t1=2v/ a=2×1/1×102s=2×10-2s

同理A在盒子外运动的时间t2=2×10-2s

A从第一次进入盒子到第二次进入盒子的时间t= t1+t2=4×10-2s    (4分)

(3)微粒运动一个周期盒子减少的速度为△v= a (t1+ t2)=2×(0.02+0.02)=0.08m/s

从小球第一次进入盒子到盒子停下,微粒球运动的周期数为n=v1/△v=0.4/0.08=5

故要保证小球始终不与盒子相碰,盒子上的小孔数至少为2n+1个,即11个. (4分)

 

 

5. ⑴1N,向右(提示:注意相当于左右两个边都以v0=10m/s向左切割磁感线,产生的感应电动势相加,左右两边都受到安培力作用,且方向都向右。)⑵8m/s(提示:车运动起来后,当车对地的速度为v时,线框切割磁感线的相对速度变为(v0- v),当安培力与阻力平衡时达到最大速度。);⑶100m(提示:先求出最大共同速度为5m/s,撤去磁场后对A和P整体用动能定理。)

 

 

 

 

6.解:(1)子弹打击滑块,满足动量守恒定律,设子弹射入滑块后滑块的速度为v1,则

          ①     (4分)

(2)从O到A滑块做加速度增大的减速运动,从A到O滑块可能做加速度增大的减速运动,或先做加速度减小的加速运动再做加速度增大的减速运动。

滑块向右到达最右端时,弹簧的弹性势能最大。设在OA段克服摩擦力做的功为Wf,与滑块的动摩擦因数为μ,弹性势能最大值为Ep,根据能量守恒定律:

    ②                       (2分)

由于滑块恰能返回到O点,返回过程中,根据能量守恒定律:

(3)设第二颗子弹射入滑块后滑块的速度为v2,由动量守恒定律得:

     (2分)

如果滑块第一次返回O点时停下,则滑块的运动情况同前,对该过程应用能量守恒定律:

       

①②③④⑤⑥联立解得

如果滑块第三次返回O点时停下,对该过程由能量守恒:

①②③④⑥⑦联立解得

所以,滑块仅两次经过O点,第二颗子弹入射速度的大小范围在

 

 

 

 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网