2006年普通高等学校招生全国统一考试(全国II卷)

数学(文史类)

本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。第I卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。

第I卷

注意事项:

1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式

如果事件A、B互斥,那么球的表面积公式

如果事件A、B相互独立,那么其中表示球的半径

球的体积公式

如果事件A在一次试验中发生的概率是P,那么其中表示球的半径

次独立重复试验中恰好发生次的概率是

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

D

D

C

B

B

B

A

C

D

A

二、填空题

(13)45;(14);(15);(16)25

三、解答题

17、解:(1)由

由正弦定理知

(2)

由余弦定理知

 

(18)解:设的公比为q,由,所以得

……………………………………①

……………………………………②

由①、②式得

整理得

解得

所以 q=2或q=-2

将q=2代入①式得,

所以

 

将q=-2代入①式得,

所以

 

19解:设表示事件“第二箱中取出i件二等品”,i=0,1;

表示事件“第三箱中取出i件二等品”,i=0,1,2;

(1)依题意所求的概率为

(2)解法一:所求的概率为

解法二:所求的概率为

 

20.解法一:

(Ⅰ)设OAC中点,连接EOBO,则EO∥=C1C,又C1C∥=B1B,所以EO∥=DBEOBD为平行四边形,EDOB.     ……2分

ABBC,∴BOAC

又平面ABC⊥平面ACC1A1BOÌ面ABC,故BO⊥平面ACC1A1

ED⊥平面ACC1A1BDAC1EDCC1

EDBB1ED为异面直线AC1BB1的公垂线.……6分

(Ⅱ)连接A1E,由AA1ACAB可知,A1ACC1为正方形,

A1EAC1,又由ED⊥平面ACC1A1EDÌ平面ADC1知平面

ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EFAD,垂足为F,连接A1F,则A1FAD,∠A1FE为二面角A1ADC1的平面角.

不妨设AA1=2,则AC=2,ABEDOB=1,EF==,

tan∠A1FE=,∴∠A1FE=60°.

所以二面角A1ADC1为60°.          ………12分

解法二:

(Ⅰ)如图,建立直角坐标系Oxyz,其中原点OAC的中点.

A(a,0,0),B(0,b,0),B1(0,b,2c).

C(-a,0,0),C1(-a,0,2c),E(0,0,c),D(0,bc).   ……3分

=(0,b,0),=(0,0,2c).

?=0,∴EDBB1

又=(-2a,0,2c),

?=0,∴EDAC1,    ……6分

所以ED是异面直线BB1AC1的公垂线.

(Ⅱ)不妨设A(1,0,0),则B(0,1,0),C(-1,0,0),A1(1,0,2),

=(-1,-1,0),=(-1,1,0),=(0,0,2),

?=0,?=0,即BCABBCAA1,又ABAA1A

BC⊥平面A1AD.

又  E(0,0,1),D(0,1,1),C(-1,0,1),

=(-1,0,-1),=(-1,0,1),=(0,1,0),

?=0,?=0,即ECAEECED,又AEEDE

∴  EC⊥面C1AD.  ……10分

cos<,>==,即得和的夹角为60°.

所以二面角A1ADC1为60°.          ………12分

 

 

(21)解:由f(x)为二次函数知

令f(x)=0解得其两根为

由此可知

(i)当时,

的充要条件是,即解得

(ii)当时,

的充要条件是,即解得

综上,使成立的a的取值范围为

22.解:(Ⅰ)由已知条件,得F(0,1),λ>0.

A(x1y1),B(x2y2).由=λ

即得  (-x1,1-y)=λ(x2y2-1),

将①式两边平方并把y1x12y2x22代入得  y1λ2y2   ③

解②、③式得y1λy2=,且有x1x2=-λx22=-4λy2=-4,

抛物线方程为yx2,求导得y′=x

所以过抛物线上AB两点的切线方程分别是

yx1(xx1)+y1yx2(xx2)+y2

yx1xx12yx2xx22

解出两条切线的交点M的坐标为(,)=(,-1).   ……4分

所以?=(,-2)?(x2x1y2y1)=(x22x12)-2(x22x12)=0

所以?为定值,其值为0.   ……7分

(Ⅱ)由(Ⅰ)知在△ABM中,FMAB,因而S=|AB||FM|.

|FM|==

==+.

因为|AF|、|BF|分别等于AB到抛物线准线y=-1的距离,所以

|AB|=|AF|+|BF|=y1y2+2=λ++2=(+)2

于是  S=|AB||FM|=(+)3

由+≥2知S≥4,且当λ=1时,S取得最小值4.