2006高考数学试题陕西卷

文科试题(必修+选修Ⅰ)

注意事项:

       1.本试卷分第一部分和第二部分。第一部分为选择题,第二部分为非选择题。

       2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。

       3.所有答案必须在答题卡上指定区域内作答。考试结束后,将本试卷和答题卡一并交回。

第一部分(共60分)

一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)

1.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0}, 则P∩Q等于(  )

  A. {2}     B.{1,2}   C.{2,3}  D.{1,2,3}

试题详情

2.函数f(x)= (x∈R)的值域是(   )

A.(0,1)   B.(0,1]     C.[0,1)     D.[0,1]

试题详情

3. 已知等差数列{an}中,a2+a8=8,则该数列前9项和S9等于(    )

A.18       B.27     C.36      D.45

试题详情

4.设函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(0, 0),其反函数的图像过点(1,2),则a+b等于(   )

A.6           B.5    C.4      D.3

试题详情

5.设直线过点(0,a),其斜率为1, 且与圆x2+y2=2相切,则a 的值为(   )

A.±    B.±2      B.±2    D.±4

试题详情

6. “α、β、γ成等差数列”是“等式sin(α+γ)=sin2β成立”的(  )

A. 充分而不必要条件   B. 必要而不充分条件

C.充分必要条件        D.既不充分又不必要条件

试题详情

7.设x,y为正数, 则(x+y)( + )的最小值为(    )

   A. 6     B.9      C.12     D.15

试题详情

8.已知非零向量与满足(+)?=0且?= , 则△ABC为(  )

A.三边均不相等的三角形    B.直角三角形

C.等腰非等边三角形        D.等边三角形

试题详情

9. 已知函数f(x)=ax2+2ax+4(a>0),若x1<x2 , x1+x2=0 , 则(    )

A.f(x1)<f(x2)     B.f(x1)=f(x2)    C.f(x1)>f(x2)   D.f(x1)与f(x2)的大小不能确定

试题详情

10. 已知双曲线(a>)的两条渐近线的夹角为,则双曲线的离心率为(  )

A.2        B.     C.       D.

试题详情

11.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是(   )

A.平面ABC必平行于α      B.平面ABC必与α相交

C.平面ABC必不垂直于α    D.存在△ABC的一条中位线平行于α或在α内

试题详情

12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(  )

A.4,6,1,7   B.7,6,1,4      C.6,4,1,7    D.1,6,4,7

第二部分(共90分)

试题详情

二.填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分)。

13.cos43°cos77°+sin43°cos167°的值为     

试题详情

14.(2x-)6展开式中常数项为        (用数字作答)

试题详情

15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有      种 .

试题详情

16.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是         

试题详情

三.解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分)。

17.(本小题满分12分)

甲、乙、丙3人投篮,投进的概率分别是,  , .现3人各投篮1次,求:

(Ⅰ)3人都投进的概率;

(Ⅱ)3人中恰有2人投进的概率.

 

 

 

 

试题详情

18. (本小题满分12分)

已知函数f(x)=sin(2x-)+2sin2(x-) (x∈R)

(Ⅰ)求函数f(x)的最小正周期    ;  (2)求使函数f(x)取得最大值的x的集合.

 

 

 

 

 

试题详情

19. (本小题满分12分)

如图,α⊥β,α∩β=l , A∈α, B∈β,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:

 (Ⅰ) 直线AB分别与平面α,β所成角的大小; (Ⅱ)二面角A1-AB-B1的大小.

试题详情

  

 

 

 

试题详情

20. (本小题满分12分)

 已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an

 

 

 

 

试题详情

21. (本小题满分12分)

如图,三定点A(2,1),B(0,-1),C(-2,1); 三动点D,E,M满足=t,  = t , =t , t∈[0,1]. (Ⅰ) 求动直线DE斜率的变化范围; (Ⅱ)求动点M的轨迹方程.

试题详情

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

22.(本小题满分14分)

已知函数f(x)=kx3-3x2+1(k≥0).

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)若函数f(x)的极小值大于0, 求k的取值范围.

 

 

 

 

试题详情

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

B

A

B

D

A

D

D

C

1.已知集合P={x∈N|1≤x≤10}={1,2,3,……,10},集合Q={x∈R | x2+x-6=0} =, 所以P∩Q等于{2} ,选A.

2.函数f(x)= (x∈R),∴ ,所以原函数的值域是(0,1] ,选B.

3. 已知等差数列{an}中,a2+a8=8,∴ ,则该数列前9项和S9==36,选C.

4.函数f(x)=loga(x+b)(a>0,a≠1)的图象过点(0,0),其反函数的图象过点(1,2),

,∴,a=3,则a+b等于4,选C.

5.直线过点(0,a),其斜率为1, 且与圆x2+y2=2相切,设直线方程为,圆心(0,0)道直线的距离等于半径,∴ ,∴ a 的值±2,选B.

6.若等式sin(α+γ)=sin2β成立,则α+γ=kπ+(-1)k?2β,此时α、β、γ不一定成等差数列,若α、β、γ成等差数列,则2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的.必要而不充分条件。选A.

7.x,y为正数,(x+y)()≥≥9,选B.

8.已知非零向量与满足()?=0,即角A的平分线垂直于BC,∴ AB=AC,又= ,∠A=,所以△ABC为等边三角形,选D.

9.已知函数f(x)=ax2+2ax+4(a>0),二次函数的图象开口向上,对称轴为,a>0,∴ x1+x2=0,x1与x2的中点为0,x1<x2,∴ x2到对称轴的距离大于x1到对称轴的距离,∴ f(x1)<f(x2) ,选A.

10.已知双曲线(a>)的两条渐近线的夹角为,则,∴ a2=6,双曲线的离心率为 ,选D.

11.已知平面α外不共线的三点A、B、C到α的距离都相等,则可能三点在α的同侧,即.平面ABC平行于α,这时三条中位线都平行于平面α;也可能一个点A在平面一侧,另两点B、C在平面另一侧,则存在一条中位线DE//BC,DE在α内,所以选D.

12.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16。当接收方收到密文14,9,23,28时,

,解得,解密得到的明文为C.

二、填空题

13.-   14.60   15.1320     16.3R

13.cos43°cos77°+sin43°cos167°==-

14.(2x-)6展开式中常数项.

15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,可以分情况讨论,① 甲去,则乙不去,有=480种选法;②甲不去,乙去,有=480种选法;③甲、乙都不去,有=360种选法;共有1320种不同的选派方案.

16.水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,5个球心组成一个正四棱锥,这个正四棱锥的底面边长为4R,侧棱长为3R,求得它的高为R,所以小球的球心到水平桌面α的距离是3R.

三、解答题

17.解: (Ⅰ)记"甲投进"为事件A1 , "乙投进"为事件A2 , "丙投进"为事件A3

则 P(A1)= , P(A2)= , P(A3)= ,

∴ P(A1A2A3)=P(A1) ?P(A2) ?P(A3) = × ×=

 ∴3人都投进的概率为

(Ⅱ) 设“3人中恰有2人投进"为事件B

P(B)=P(A2A3)+P(A1A3)+P(A1A2)

   =P()?P(A2)?P(A3)+P(A1)?P()?P(A3)+P(A1)?P(A2)?P()

   =(1-)× × + ×(1-)× + × ×(1-) =

 ∴3人中恰有2人投进的概率为

18.解:(Ⅰ) f(x)=sin(2x-)+1-cos2(x-)

          = 2[sin2(x-)- cos2(x-)]+1

         =2sin[2(x-)-]+1

         = 2sin(2x-) +1 

∴ T==π

  (Ⅱ)当f(x)取最大值时, sin(2x-)=1,有  2x- =2kπ+

即x=kπ+    (k∈Z)  ∴所求x的集合为{x∈R|x= kπ+ ,  (k∈Z)}.

 

19.解法一: (Ⅰ)如图, 连接A1B,AB1, ∵α⊥β, α∩β=l ,AA1⊥l, BB1⊥l,

∴AA1⊥β, BB1⊥α. 则∠BAB1,∠ABA1分别是AB与α和β所成的角.

Rt△BB1A中, BB1= , AB=2, ∴sin∠BAB1 = = . ∴∠BAB1=45°.

Rt△AA1B中, AA1=1,AB=2, sin∠ABA1= = , ∴∠ABA1= 30°.

故AB与平面α,β所成的角分别是45°,30°.

(Ⅱ) ∵BB1⊥α, ∴平面ABB1⊥α.在平面α内过A1作A1E⊥AB1交AB1于E,则A1E⊥平面AB1B.过E作EF⊥AB交AB于F,连接A1F,则由三垂线定理得A1F⊥AB, ∴∠A1FE就是所求二面角的平面角.

在Rt△ABB1中,∠BAB1=45°,∴AB1=B1B=. ∴Rt△AA1B中,A1B== = . 由AA1?A1B=A1F?AB得 A1F== = ,

∴在Rt△A1EF中,sin∠A1FE = = , ∴二面角A1-AB-B1的大小为arcsin.

解法二: (Ⅰ)同解法一.

(Ⅱ) 如图,建立坐标系, 则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).在AB上取一点F(x,y,z),则存在t∈R,使得=t , 即(x,y,z-1)=t(,1,-1), ∴点F的坐标为(t, t,1-t).要使⊥,须?=0, 即(t, t,1-t) ?(,1,-1)=0, 2t+t-(1-t)=0,解得t= , ∴点F的坐标为(,-, ), ∴=(,, ). 设E为AB1的中点,则点E的坐标为(0,, ). ∴=(,-,).

又?=(,-,)?(,1,-1)= - - =0, ∴⊥, ∴∠A1FE为所求二面角的平面角.

又cos∠A1FE= = = = = ,

∴二面角A1-AB-B1的大小为arccos.

20.解: ∵10Sn=an2+5an+6, ①   ∴10a1=a12+5a1+6,解之得a1=2或a1=3.

又10Sn-1=an-12+5an-1+6(n≥2),②

 由①-②得 10an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0 

∵an+an-1>0  , ∴an-an-1=5 (n≥2).

当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列∴a1≠3;

当a1=2时,a3=12, a15=72, 有a32=a1a15 , ∴a1=2, ∴an=5n-3.

21.解法一: 如图, (Ⅰ)设D(x0,y0),E(xE,yE),M(x,y).由=t,  = t ,

知(xD-2,yD-1)=t(-2,-2).   ∴  同理 .

 ∴kDE =  = = 1-2t.  ∴t∈[0,1] , ∴kDE∈[-1,1].

(Ⅱ) ∵=t  ∴(x+2t-2,y+2t-1)=t(-2t+2t-2,2t-1+2t-1)=t(-2,4t-2)=(-2t,4t2-2t). ∴     , ∴y= , 即x2=4y.  ∵t∈[0,1], x=2(1-2t)∈[-2,2].

即所求轨迹方程为: x2=4y, x∈[-2,2]

解法二: (Ⅰ)同上.

(Ⅱ) 如图, =+ = +  t = + t(-) = (1-t) +t,

 = + = +t = +t(-) =(1-t) +t,

 = += + t= +t(-)=(1-t) + t

     = (1-t2)  + 2(1-t)t+t2

设M点的坐标为(x,y),由=(2,1), =(0,-1), =(-2,1)得

  消去t得x2=4y, ∵t∈[0,1], x∈[-2,2].

故所求轨迹方程为: x2=4y, x∈[-2,2]

22.解: (I)当k=0时, f(x)=-3x2+1  ∴f(x)的单调增区间为(-∞,0],单调减区间[0,+∞).

当k>0时 , f '(x)=3kx2-6x=3kx(x-)

∴f(x)的单调增区间为(-∞,0] , [ , +∞), 单调减区间为[0, ].

(II)当k=0时, 函数f(x)不存在最小值.

 当k>0时, 依题意 f()= - +1>0 ,

即k2>4 , 由条件k>0, 所以k的取值范围为(2,+∞)