西安中学

师大附中

高2009届第二次模拟考试

高新一中

长安一中

数学试题(文科)

命题人:西安中学   薛党鹏

审题人:长安一中   岳建良

本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.

第I卷 (选择题,共60分)

一.选择题:本大题共12小题  每小题5分,共60分  在每小题给出的四个选项中,只有一项是符合题目要求的 

1.已知集合M={x|x<3},N={x|log2x>1},则M∩N=

A.           B.{x|0<x<3}      C.{x|1<x<3}   D.{x|2<x<3}

2. 函数y=8sin4xcos4x的最小正周期是(        ).

A.2π            B.4π                C.                D.

3. 已知等差数列中,,则前10项的和

A.100           B.210           C.380            D.400

4. 下列函数中,在其定义域内既是奇函数又是减函数的是

A.     B.     

C.     D.

5.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是

A.2            B.3         C.5            D.13

6. 已知是两条不同直线,是三个不同平面,下列命题中正确的是

A.        B.

C.        D.

7. 若双曲线的离心率为2, 则双曲线的离心率为

A.        B.           C.2            D.

8. 不等式的解集是

A.   B.   C. D.

 9.设所在平面内一点,且,则的面积与的面积之比为

A.           B.        C.            D.

10. 从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为

A.            B.        C.         D.

11. 若曲线的一条切线与直线垂直,则直线的方程为

A.    B.  

 C.  D.

12. 数列中,, , 则该数列的前100项之和=

A.5          B. 20              C. 300         D. 652

第II卷(共90分)

二、填空题:本大题共4小题,每小题4分,共16分  把答案填在题中横线上 

13. 已知正数满足,则的最大值为_______.

试题详情

14.正四棱锥侧面与底面所成的角为,则其侧棱与底面所成角的正切值为       

试题详情

15. 二项式的展开式中的常数项为________.(结果用数值作答)

试题详情

16. 如果一个函数的图象关于直线对称,则称此函数为自反函数. 使得函数为自反函数的一组实数的取值为________

试题详情

三、解答题:本大题共6小题,共74分  解答应写出文字说明,证明过程或演算步骤

17.(本题满分12分)已知函数.

试题详情

(Ⅰ)在所给的坐标纸上作出函数的图象(不要求写出作图过程).

试题详情

(Ⅱ)令.求函数的最小值以及取得最小值时所对应的的集合.

试题详情

试题详情

18.(本题满分12分)按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高三一班50名学生在上学期参加活动的次数统计如图所示.

试题详情

(I)求该班学生参加活动的人均次数

试题详情

(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率

(要求:答案用最简分数表示)

 

 

 

 

 

试题详情

19.(本题满分12分)如图所示,在矩形中,,点的中点,将沿折起到的位置,使二面角是直二面角.

试题详情

   (1)证明:

试题详情

   (2)求二面角的正切值.

 

 

 

 

试题详情

20. (本题满分12分)设函数

试题详情

(I)求函数的单调区间;

试题详情

(II)若对任意的的取值范围.

 

试题详情

21. (本题满分12分) 已知椭圆Γ的中心在原点,焦点在x轴上,它的一个顶点B的坐标为,离心率等于.直线与椭圆Γ交于两点.

(Ⅰ)求椭圆Γ的方程;

试题详情

(Ⅱ) 若椭圆Γ的右焦点恰好为的垂心,试求出直线的方程.

 

试题详情

22. (本题满分14分)已知正项数列满足对一切,有,其中

试题详情

(Ⅰ)求证: 对一切,有;

试题详情

(Ⅱ)求数列的通项公式;

试题详情

(Ⅲ)求证:当时,有.

 

 

 

 

 

 

西安中学

师大附中

高2009届第二次模拟考试

高新一中

长安一中

数学答题纸(文科)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

二、填空题:(本大题共4小题,每小题4分,共16分)

13.          ,   14.          .  15.          .   16.          .

试题详情

三、解答题:(本大题共6小题,共74分)

17.(Ⅰ)

试题详情

(Ⅱ)

 

 

 

 

 

试题详情

18. (Ⅰ)

 

 

 

 

 

 

 

   (Ⅱ)

 

 

 

 

 

试题详情

19. (Ⅰ)

 

试题详情

 

(Ⅱ)

  

 

 

 

 

 

 

试题详情

20. (Ⅰ)

 

 

 

 

 

 

 

 

 

   (Ⅱ)

 

 

 

 

 

 

试题详情

21. (I)

 

 

 

 

 

 

  (II)

 

 

 

 

 

 

 

 

 

试题详情

22. (Ⅰ)

 

 

 

 

 

 

 

(Ⅱ)

 

 

 

 

 

 

 

(Ⅲ)

 

试题详情

 

西安中学

师大附中

高2009届第二次模拟考试

高新一中

长安一中

数学(文)答题纸

试题详情

本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.

  1.考生必须在指定位置写清楚自己的考号,姓名与班级。

试题详情

意  2.选择题请用2B铅笔正确填涂。

试题详情

事  3.保持卡面清洁,不要折叠,不要弄破。

试题详情

项  4.请注意题号顺序,并把答案写在各题相应的答题区内。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

西安中学

师大附中

高2009届第二次模拟考试

高新一中

长安一中

试题详情

一.选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

B

A

C

D

D

D

A

B

A

A

二.填空题

   13.4;        14. ;       15.15;     16.,可以填写任一实数.

三.解答题

17. (Ⅰ)列表:

2

6

10

14

0

1

3

1

1

描点作图,得图象如下.

6分

(Ⅱ)

所以,当,即时,函数取得最小值.     12分

18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.

(I)该班学生参加活动的人均次数为=.    6分

(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为.                                              12分

19.(Ⅰ)∵AD=2AB=2,E是AD的中点,

∴△BAE,△CDDE是等腰直角三角形,

易知,∠BEC=90°,即BE⊥EC    

又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,

∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′.                  6分

(Ⅱ)法一:设M是线段EC的中点,过M作MF⊥BC

垂足为F,连接D′M,D′F,则D′M⊥EC

∵平面D′EC⊥平面BEC,

∴D′M⊥平面EBC,

∴MF是D′F在平面BEC上的射影,

由三垂线定理得:D′F⊥BC

∴∠D′FM是二面D′―BC―E的平面角.

在Rt△D′MF中,

即二面角D′―BC―E的正切值为.                              12分

法二:如图,以EB,EC为x轴,y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系,

设平面BEC的法向量为;平面D′BC的法向量为

∴二面角D′―BC―E的正切值为.                                 12分

20.(I)

   (II)由(I)知

   

21(Ⅰ)设椭圆C的方程为,则由题意知b = 1.

∴椭圆C的方程为  …………………………………………………6分

(Ⅱ)易知直线的斜率为,从而直线的斜率为1.设直线的方程为,代如椭圆的方程,并整理可得.设,则.于是

解之得.

时,点即为直线与椭圆的交点,不合题意.当时,经检验知和椭圆相交,符合题意.

所以,当且仅当直线的方程为时, 点的垂心.        12分

22.(Ⅰ)对一切

于是,                            

         ()   5分

(Ⅱ)由

两式相减,得:

  

        

       ∴.                                10分

(Ⅲ) 由于,        

所以,   14分

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网