本资料来源于《七彩教育网》http://www.7caiedu.cn

第七单元  数列的求和、极限、数学归纳法

一.选择题

(1) 已知等差数列{an}的前n项和为Sn,且S4=3,S8=7,则S12的值是                  (      )

 A  8     B  11                  C  12               D  15

(2) 已知数列6ec8aac122bd4f6e满足6ec8aac122bd4f6e,则6ec8aac122bd4f6e=                         (      )

A  0       B  6ec8aac122bd4f6e      C  6ec8aac122bd4f6e        D  6ec8aac122bd4f6e

(3) 数列1,(1+2),(1+2+22),…,( 1+2+22+…+2n-1+…)的前n项和是                                   (      )

A 2n            B 2n-2                C 2n+1- n -2        D n?2n

(4) 从集合{1,2,3,4,5,6,7,8,9,10}中任选三个不同的数,如果这三个数经过适当的排列成等差数列,则这样的等差数列一共有                                                   (      )

A  20个 B  40个      C 10个                D 120个

(5) 6ec8aac122bd4f6e6ec8aac122bd4f6e=                                                                                              (      )

A 2              B 4                     C 6ec8aac122bd4f6e                   D  0

(6) 如果6ec8aac122bd4f6e为各项都大于零的等差数列,公差6ec8aac122bd4f6e,则                                (      )

6ec8aac122bd4f6e   B   6ec8aac122bd4f6e     C  6ec8aac122bd4f6e        D 6ec8aac122bd4f6e

(7)已知等差数列{an}与{bn}的前n项和分别为Sn与Tn, 若6ec8aac122bd4f6e, 则6ec8aac122bd4f6e6ec8aac122bd4f6e的值是                                                                                                                                        (       )

A 6ec8aac122bd4f6e            B 6ec8aac122bd4f6e              C 6ec8aac122bd4f6e                    D  6ec8aac122bd4f6e

(8) 6ec8aac122bd4f6e6ec8aac122bd4f6e的值是                                                                         (       )

A 6ec8aac122bd4f6e            B 6ec8aac122bd4f6e                 C 6ec8aac122bd4f6e                    D  6ec8aac122bd4f6e

(9) 已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则

6ec8aac122bd4f6e=                                                         (       )

  A   2      B  6ec8aac122bd4f6e           C  1                          D  6ec8aac122bd4f6e

(10) 已知数列6ec8aac122bd4f6e满足6ec8aac122bd4f6e,6ec8aac122bd4f6e,6ec8aac122bd4f6e….若6ec8aac122bd4f6e,则  (       )

6ec8aac122bd4f6e          B3                  C4                      D5

 

二.填空题

(11) 在等差数列{an}中,a1>0,a5=3a7,前n项和为Sn,若Sn取得最大值,则n=     .

(12) 在等差数列{an}中,前n项和为Sn,若S19=31,S31=19,则S50的值是______

(13)在等比数列{an}中,若a9?a11=4,则数列{6ec8aac122bd4f6e}前19项之和为_______

(14)若a>0,且a≠1, 则6ec8aac122bd4f6e6ec8aac122bd4f6e的值是                            .

三.解答题

(15) 设数列{an}的首项a1=a≠6ec8aac122bd4f6e,且6ec8aac122bd4f6e,

6ec8aac122bd4f6e,n==l,2,3,…?.

(I)求a2,a3

(II)判断数列{bn}是否为等比数列,并证明你的结论;

(III)求6ec8aac122bd4f6e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16) 数列{an}的前n项和为Sn,且a1=1,6ec8aac122bd4f6e,n=1,2,3,……,求

   (I)a2,a3,a4的值及数列{an}的通项公式;

   (II)6ec8aac122bd4f6e的值.

 

 

 

 

 

 

 

 

 

 

(17) 已知{6ec8aac122bd4f6e}是公比为q的等比数列,且6ec8aac122bd4f6e成等差数列.

   (Ⅰ)求q的值;

(Ⅱ)设{6ec8aac122bd4f6e}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.

.

 

 

 

 

 

 

 

(18)  已知定义在R上的函数6ec8aac122bd4f6e和数列6ec8aac122bd4f6e满足下列条件:

  6ec8aac122bd4f6e

6ec8aac122bd4f6e,其中a为常数,k为非零常数.

(Ⅰ)令6ec8aac122bd4f6e6ec8aac122bd4f6e,证明数列6ec8aac122bd4f6e是等比数列;

(Ⅱ)求数列6ec8aac122bd4f6e的通项公式;

(Ⅲ)当6ec8aac122bd4f6e时,求6ec8aac122bd4f6e.

 

 

 

 

 

 

 

一选择题:

1.C 

[解析]:∵{an}等差数列,∴2(S8 -S4)= S4+(S12-S8),且S4=3,S8=7,

则S12=12

2.B  

[解析]:已知数列6ec8aac122bd4f6e满足6ec8aac122bd4f6e

6ec8aac122bd4f6e有规律的重复了,故6ec8aac122bd4f6e=6ec8aac122bd4f6e

3.C  

[解析]:∵( 1+2+22+…+2n-1)=2n-1

∴数列1,(1+2),(1+2+22),…,( 1+2+22+…+2n-1+…)的前n项和为:

(2-1)+(22-1)+…+(2n-1)= 2n+1- n -2

4.B  

[解析]:当公差d为正时,若d=1,则这样的等差数列有8个

                                              若d=2,则这样的等差数列有6个

                                               若d=3,则这样的等差数列有4个

                                               若d=4,则这样的等差数列有2个

                                                共有20个

             当公差d为负时,也有20个。

5.C  

[解析]:6ec8aac122bd4f6e=6ec8aac122bd4f6e=6ec8aac122bd4f6e

6. B  

[解析]:因为6ec8aac122bd4f6e为各项都大于零的等差数列,公差6ec8aac122bd4f6e

              故    6ec8aac122bd4f6e

6ec8aac122bd4f6e

7.C  

[解析]:因为等差数列{an}与{bn}的前n项和分别为Sn与Tn,

6ec8aac122bd4f6e

6ec8aac122bd4f6e, 则6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

8.C  

[解析]:6ec8aac122bd4f6e

9.C  

[解析]:因为数列{log2(an-1)}(n∈N*)为等差数列,∴

故设log2(an+1-1)-log2(an-1)=d

a1=3,a2=5,故d=1

6ec8aac122bd4f6e,

故{an-1}是首项为2,公比为2的等比数列,

an-1=2n,∴an=2n+1,∴an+1an=2n

6ec8aac122bd4f6e=6ec8aac122bd4f6e

6ec8aac122bd4f6e=1

10.B    

[解析]:因为数列6ec8aac122bd4f6e满足6ec8aac122bd4f6e,6ec8aac122bd4f6e,6ec8aac122bd4f6e….

6ec8aac122bd4f6e

     6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

……

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e,故6ec8aac122bd4f6e

二填空题:

11.7或8       

[解析]:在等差数列{an}中,a1>0,∵a5=3a7,∴a1+4d= 3(a1+6d)

 a1=6ec8aac122bd4f6e

∴Sn=n(6ec8aac122bd4f6e)+6ec8aac122bd4f6ed=6ec8aac122bd4f6e

n=7或8时, Sn取得最大值。 

12.-50        

[解析]:在等差数列{an}中,前n项和为Sn

S19=19a1+19×9d

S31=31a1+31×15d

S31-S19=12 a1+12×6ec8aac122bd4f6e

又S19=31,S31=19,

故a16ec8aac122bd4f6e=-1

S50=-50

 

13.-19   

[解析]:由题意an>0,且a1?a19 =a2?a18 =…=a9?a11=6ec8aac122bd4f6e

               又a9?a11=4 ,故6ec8aac122bd4f6e=6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e+…+6ec8aac122bd4f6e=6ec8aac122bd4f6e

 

14. -2  (a>1时);  3  (0< a<1时).

[解析]:当0< a<1时,6ec8aac122bd4f6ean=0,此时,6ec8aac122bd4f6e6ec8aac122bd4f6e=3,

      :当 a>1时, 6ec8aac122bd4f6e6ec8aac122bd4f6e=0,此时6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e

三解答题

(15)解(I)a2=a1+6ec8aac122bd4f6e=a+6ec8aac122bd4f6e,a3=6ec8aac122bd4f6ea2=6ec8aac122bd4f6ea+6ec8aac122bd4f6e

(II)∵ a4=a3+6ec8aac122bd4f6e=6ec8aac122bd4f6ea+6ec8aac122bd4f6e, 所以a5=6ec8aac122bd4f6ea4=6ec8aac122bd4f6ea+6ec8aac122bd4f6e,

所以b1=a16ec8aac122bd4f6e=a-6ec8aac122bd4f6e, b2=a36ec8aac122bd4f6e=6ec8aac122bd4f6e(a-6ec8aac122bd4f6e), b3=a56ec8aac122bd4f6e=6ec8aac122bd4f6e(a-6ec8aac122bd4f6e),

猜想:{bn}是公比为6ec8aac122bd4f6e的等比数列?

    证明如下:

    因为bn+1=a2n+16ec8aac122bd4f6e=6ec8aac122bd4f6ea2n6ec8aac122bd4f6e=6ec8aac122bd4f6e(a2n16ec8aac122bd4f6e)=6ec8aac122bd4f6ebn, (n∈N*)

所以{bn}是首项为a-6ec8aac122bd4f6e, 公比为6ec8aac122bd4f6e的等比数列?

(III)6ec8aac122bd4f6e

(16) 解(I)由a1=1,6ec8aac122bd4f6e,n=1,2,3,……,得

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e(n≥2),得6ec8aac122bd4f6e(n≥2),

又a2=6ec8aac122bd4f6e,所以an=6ec8aac122bd4f6e(n≥2),

∴ 数列{an}的通项公式为6ec8aac122bd4f6e

(II)由(I)可知6ec8aac122bd4f6e是首项为6ec8aac122bd4f6e,公比为6ec8aac122bd4f6e项数为n的等比数列,∴  6ec8aac122bd4f6e=6ec8aac122bd4f6e

(17)解(Ⅰ)由题设6ec8aac122bd4f6e  6ec8aac122bd4f6e

6ec8aac122bd4f6e

(Ⅱ)若6ec8aac122bd4f6e

6ec8aac122bd4f6e  故6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

故对于6ec8aac122bd4f6e

(18)(Ⅰ)证明:由6ec8aac122bd4f6e,可得

6ec8aac122bd4f6e.由数学归纳法可证

6ec8aac122bd4f6e6ec8aac122bd4f6e.

 由题设条件,当6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

因此,数列6ec8aac122bd4f6e是一个公比为k的等比数列.

(Ⅱ)解:由(1)知,6ec8aac122bd4f6e

6ec8aac122bd4f6e时,6ec8aac122bd4f6e

6ec8aac122bd4f6e时,6ec8aac122bd4f6e    6ec8aac122bd4f6e.

6ec8aac122bd4f6e   6ec8aac122bd4f6e

所以,当6ec8aac122bd4f6e时, 6ec8aac122bd4f6e     6ec8aac122bd4f6e.上式对6ec8aac122bd4f6e也成立. 所以,数列6ec8aac122bd4f6e的通项公式为6ec8aac122bd4f6e. 当6ec8aac122bd4f6e

6ec8aac122bd4f6e    6ec8aac122bd4f6e。上式对6ec8aac122bd4f6e也成立,所以,数列6ec8aac122bd4f6e的通项公式为6ec8aac122bd4f6e    6ec8aac122bd4f6e

(Ⅲ)解:当6ec8aac122bd4f6e时,  6ec8aac122bd4f6e6ec8aac122bd4f6e.

 

 

本资料来源于《七彩教育网》http://www.7caiedu.cn