2007年广东省揭阳市高中毕业班高考调研测试数学试题(文科)

本试卷共4页,21小题,满分150分。考试用时l20分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

          3.非选择题必须用黑色宁迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

          4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.

如果事件互斥,那么

一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中。只有一项是符合题目要求的。

1.设集合A=,则为    

试题详情

       A.    B.    C.    D.

试题详情

2.若(i为虚数单位),则使值可能是

试题详情

A.0                   B.               C.               D.

试题详情

3.下列函数中,在区间上为增函数且以为周期的函数是

试题详情

A.        B.       C.         D.

试题详情

4.命题“”的否定是

试题详情

A.     B.

试题详情

C.      D.不存在

试题详情

5. 设表示平面,表示直线,给定下列四个命题:

试题详情

;②;

试题详情

;④.

其中正确命题的个数有

A.1个            B.2个          C.3个            D.4个

试题详情

6.在等比数列中,

试题详情

A.3           B.           C.3或             D.

试题详情

7.圆上的点到直线的最大距离与最小距离的差为

试题详情

A.             B.              C.             D.6

试题详情

8.一个算法的程序框图如下图所示,若该程序输出的结果为,则判断框中应填入的条件是

 

 

 

试题详情

A.             B.           C.           D.

试题详情

9.

20070126

试题详情

       A.                      B.                      C.                      D.

试题详情

10.若不等式组表示的平面区域是一个三角形,则的取值范围是

试题详情

A.    B.         C.     D.  

试题详情

二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.

11. 统计某校1000名学生的数学会考成绩,得到样

本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是    

优秀率为            

 

试题详情

12.在△ABC中,∠C=90°,的值是        

试题详情

13.在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是             (写出所有正确结论的编号).

①矩形;

②不是矩形的平行四边形;

③有三个面为直角三角形,有一个面为等腰三角形的四面体;

④每个面都是等腰三角形的四面体;

⑤每个面都是直角三角形的四面体.

试题详情

14.(坐标系与参数方程选做题) 极坐标系中,曲线相交于点,则            

试题详情

15.(几何证明选讲选做题)如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线,则点A到直线的距离AD为         .

 

试题详情

三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

试题详情

如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A、B,观察对岸的点C,测得,且米。

试题详情

(1)求

(2)求该河段的宽度。

 

 

 

 

试题详情

17.(本小题满分12分)

试题详情

已知函数是一次函数,且成等比数列,设,()

试题详情

(1)求

试题详情

(2)设,求数列的前n项和

试题详情

18. (本小题满分14分)

试题详情

在三棱锥 中,,.

试题详情

(1)      求三棱锥的体积;

试题详情

(2)      证明:;

(3)      求二面角C-SA-B的大小。

试题详情

19.(本小题满分14分)

试题详情

设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线

试题详情

(1)求点的轨迹方程;

试题详情

(2)设圆,且圆心在曲线上,是圆轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?

试题详情

20.(本小题12分)

  如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米

       (1) 要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

试题详情

       (2) 若|AN| (单位:米),则当AM、AN的长度是多少时,矩形花坛AMPN的面积最大?并求出最大面积.

试题详情

21.(本小题满分14分)

试题详情

已知二次函数.

试题详情

(1)若,试判断函数零点个数;

试题详情

(2) 若对,证明方程必有一个实数根属于

试题详情

 (3)是否存在,使同时满足以下条件①当时, 函数有最小值0;;②对,都有。若存在,求出的值,若不存在,请说明理由。

2007年揭阳市高中毕业班高考调研测试

试题详情

一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.

二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.

三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.

四、只给整数分数,选择题和填空题不给中间分数.

一.选择题:CCDAB   CBDAD

1.选C.

2.将各选项代入检验易得答案选C.

3.由函数以为周期,可排除A、B,由函数在为增函数,可排除C,故选D。

5.正确命题有②、④,故选B.

6.

,故选C。

7.将圆的方程化为标准方程得,由数形结合不难得出所求的距离差为已知圆的直径长.,故选B.

8.该程序的功能是求和,因输出结果,故选D.

9.如图设点P为AB的三等分点,要使△PBC的面积不小于,则点P只能在

AP上选取,由几何概型的概率

公式得所求概率为.故选A.

10.如图:易得答案选D.

二.填空题:11.800、20%;12. 3;13. ①③④⑤;14. ; 15.

11.由率分布直方图知,及格率==80%,

及格人数=80%×1000=800,优秀率=%.

12.由

,得

13.显然①可能,②不可能,③④⑤如右图知都有可能。

14.在平面直角坐标系中,曲线分别表示圆和直线,易知

15. C为圆周上一点,AB是直径,所以AC⊥BC,而BC=3,AB=6,得∠BAC=30°,进而得∠B=60°,所以∠DCA=60°,又∠ADC=90°,得∠DAC=30°,

三.解答题:

16.解:(1)

              ------------------------4分

(2)∵

,

由正弦定理得:

------------6分

如图过点B作垂直于对岸,垂足为D,则BD的长就是该河段的宽度。

中,∵,------------8分

       (米)

∴该河段的宽度米。---------------------------12分

17.解:(1)设,()由成等比数列得

,----------------①,   

  ∴---------------②

由①②得,  ∴-----------------------------4分

,显然数列是首项公差的等差数列

------------------------------------6分

[或]

(2)∵

------------8分

2

---10分

。------------------------------------------12分

18.(1)解:∵

,

平面------------ ----------------2分

中, ,

中,

,

.--------------4分

(2)证法1:由(1)知SA=2, 在中,---6分

,∴-------------------8分

〔证法2:由(1)知平面,∵

,∵,,∴

又∵,∴

(3) ∵

为二面角C-SA-B的平面角---------10分

中,∵

,

∴即所求二面角C-SA-B为-------------------------14分

19.解:(1)依题意知,动点到定点的距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线………………………………2分

    ∵      ∴ 

∴ 曲线方程是………4分

(2)设圆的圆心为,∵圆

∴圆的方程为  ……………………………7分

得:  

设圆与轴的两交点分别为

方法1:不妨设,由求根公式得

…………………………10分

又∵点在抛物线上,∴

∴ ,即=4--------------------------------------------------------13分

∴当运动时,弦长为定值4…………………………………………………14分

 〔方法2:∵ 

 又∵点在抛物线上,∴, ∴  

∴当运动时,弦长为定值4〕

20. 解:设AN的长为x米(x >2)

       ∵,∴|AM|=

∴SAMPN=|AN|•|AM|= ------------------------------------- 4分

(1)由SAMPN > 32 得  > 32 ,

       ∵x >2,∴,即(3x-8)(x-8)> 0

       ∴       即AN长的取值范围是----------- 8分

(2)令y=,则y′=  -------------- 10分

∵当,y′< 0,∴函数y=上为单调递减函数,

∴当x=3时y=取得最大值,即(平方米)

此时|AN|=3米,|AM|=米      ---------------------- 12分

21.解:

(1) 

---------------2分

,函数有一个零点;--------------3分

时,,函数有两个零点。------------4分

(2)令,则

 

内必有一个实根。

即方程必有一个实数根属于。------------8分

(3)假设存在,由①得

   

由②知对,都有

时,,其顶点为(-1,0)满足条件①,又,都有,满足条件②。

∴存在,使同时满足条件①、②。------------------------------14分

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网