2008年普通高等学校招生全国统一考试(安徽卷)
数 学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.
考生注意事项:
1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.
2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效.
4. 考试结束,监考员将试题卷和答题卡一并收回.
参考公式:
如果事件互斥,那么 球的表面积公式
其中表示球的半径
如果事件相互独立,那么
球的体积公式
如果随机变量 其中表示球的半径
第I卷(选择题共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1).复数 ( )
A.2 B.-2 C. D.
(2).集合,则下列结论正确的是( )
A. B.
C. D.
(3).在平行四边形ABCD中,AC为一条对角线,若,,则( )
A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
(4).已知是两条不同直线,是三个不同平面,下列命题中正确的是( )
A. B.
C. D.
(5).将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )
A. B. C. D.
(6).设则中奇数的个数为( )
A.2 B.3 C.4 D.5
(7).是方程至少有一个负数根的( )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
(8).若过点的直线与曲线有公共点,则直线的斜率的取值范围为( )
A. B. C. D.
(9).在同一平面直角坐标系中,函数的图象与的图象关于直线对称。而函数的图象与的图象关于轴对称,若,则的值是( )
A. B. C. D.
(10).设两个正态分布和的密度函数图像如图所示。则有( )
A.
B.
C.
D.
(11).若函数分别是上的奇函数、偶函数,且满足,则有( )
A. B.
C. D.
(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )
A. B. C. D.
2008年普通高等学校招生全国统一考试(安徽卷)
数 学(理科)
第Ⅱ卷(非选择题 共90分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.
(13).函数的定义域为 .
(14)在数列在中,,,,其中为常数,则的值是
(15)若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为
(16)已知在同一个球面上,若
,则两点间的球面距离是
(17).(本小题满分12分)
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
已知函数
(Ⅰ)求函数的最小正周期和图象的对称轴方程
(Ⅱ)求函数在区间上的值域
(18).(本小题满分12分
如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(19).(本小题满分12分)
为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差为。
(Ⅰ)求n,p的值并写出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率
(20).(本小题满分12分)
设函数
(Ⅰ)求函数的单调区间;
(Ⅱ)已知对任意成立,求实数的取值范围。
(21).(本小题满分13分)
设数列满足为实数
(Ⅰ)证明:对任意成立的充分必要条件是;
(Ⅱ)设,证明:;
(Ⅲ)设,证明:
(22).(本小题满分13分)
设椭圆过点,且着焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上
一. 选择题
1A 2D 3B 4D 5C 6A 7B 8C 9B 10A 11D 12C
二. 13: 14: 1 15: 16:
(1).复数 ( )
A.2 B.-2 C. D.
解:,选A。
(2).集合,则下列结论正确的是( )
A. B.
C. D.
解: ,,又
∴ ,选D。
(3).在平行四边形ABCD中,AC为一条对角线,若,,则( )
A. (-2,-4) B.(-3,-5) C.(3,5) D.(2,4)
解:因为,选B。
(4).已知是因为,选B。。
两条不同直线,是三个不同平面,下列命题中正确的是( )
A. B.
C. D.
解: 均为直线,其中平行,可以相交也可以异面,故A不正确;
m,n⊥α则同垂直于一个平面的两条直线平行;选D。
(5).将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )
A. B. C. D.
解:设平移向量,则函数按向量平移后的表达式为
,因为图象关于点中心对称,
故代入得: ,,
k=0得:,选C。本题也可以从选择支出发,逐个排除也可。
(6).设则中奇数的个数为( )
A.2 B.3 C.4 D.5
解:由题知,逐个验证知,其它为偶数,选A。
(7).是方程至少有一个负数根的( )
A.必要不充分条件 B.充分不必要条件
C.充分必要条件 D.既不充分也不必要条件
解:当,得a<1时方程有根。a<0时,,方程有负根,又a=1时,方程根为,所以选B
(8).若过点的直线与曲线有公共点,则直线的斜率的取值范围为( ) A. B. C. D.
解:设直线方程为,即,直线与曲线有公共点,
圆心到直线的距离小于等于半径 ,
得,选择C
另外,数形结合画出图形也可以判断C正确。
(9).在同一平面直角坐标系中,函数的图象与的图象关于直线对称。而函数的图象与的图象关于轴对称,若,则的值是( )
A. B. C. D.
解:由题知则,选D。
(10).设两个正态分布和的密度函数图像如图所示。则有( )
A.
B.
C.
D.
解:根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A。
(11).若函数分别是上的奇函数、偶函数,且满足,则有( )
A. B.
C. D.
解: 用代换x得: ,
解得:,而单调递增且大于等于0,,选D。
(12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )
A. B. C. D.
解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故为;综上知选C。
(13).函数的定义域为 .
解:由题知:;解得:x≥3.
(14)在数列在中,,,,其中为常数,则的值是
解: ∵∴从而。
∴a=2,,则
(15)若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为
解:如图知是斜边为3 的等腰直角三角形,是直角边为1等腰直角三角形,区域的面积
(16)已知在同一个球面上,若
,则两点间的球面距离是
解: 如图,易得,,,则此球内接长方体三条棱长为AB、BC、CD(CD的对边与CD等长),从而球外接圆的直径为,R=4则BC与球心构成的大圆如图,因为△OBC为正三角形,则B,C两点间的球面距离是。
三. 解答题
17解:(1)
由
函数图象的对称轴方程为
(2)
因为在区间上单调递增,在区间上单调递减,
所以 当时,去最大值 1
又 ,当时,取最小值
所以 函数 在区间上的值域为
18 方法一(综合法)
(1)取OB中点E,连接ME,NE
又
(2)
为异面直线与所成的角(或其补角)
作连接
,
所以 与所成角的大小为
(3)点A和点B到平面OCD的距离相等,连接OP,过点A作
于点Q,
又 ,线段AQ的长就是点A到平面OCD的距离
,
,所以点B到平面OCD的距离为
方法二(向量法)
作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系
,
(1)
设平面OCD的法向量为,则
即
取,解得
(2)设与所成的角为,
, 与所成角的大小为
(3)设点B到平面OCD的交流为,则为在向量上的投影的绝对值,
由 , 得.所以点B到平面OCD的距离为
19 (1)由得,从而
的分布列为
0
1
2
3
4
5
6
(2)记”需要补种沙柳”为事件A, 则
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com