2008年全国各地中考试题压轴题精选讲座三

函数及图像与几何问题

【知识纵横】

    函数(本节主要指一次函数、反比例函数)及图像与几何问题,是以函数为背景探求几何性质,这类题很重要点是利用函数的性质,解决几个主要点的坐标问题,使几何知识和函数知识有机而自然结合起来,这样,才能突破难点。但在解这类题目时,要注意方程的解与坐标关系,及坐标值与线段长度关系。

【典型例题】

【例1】(山西太原)如图,在平面直角坐标系中,直线交于点,分别交轴于点和点,点是直线上的一个动点.

(1)求点的坐标.

(2)当为等腰三角形时,求点的坐标.

(3)在直线上是否存在点,使得以点为顶点的四边形是平行四边形?如果存在,直接写出的值;如果不存在,请说明理由.

    【思路点拨】(1)注意直线方程的解与坐标关系;

(2)当为等腰三角形时,分三种情况讨论,.

(3)以点为顶点的四边形是平行四边形

三种情形。

 

 

 

 

 

【例2】(浙江湖州)已知:在矩形中,.分别以所在直线为轴和轴,建立如图所示的平面直角坐标系.是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点

(1)求证:的面积相等;

(2)记,求当为何值时,有最大值,最大值为多少?

(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.

 

【思路点拨】(1)用的代数式表示的面积; (2)写出两点坐标(含的代数式表示),利用三角形面积公式解之;(3)设存在这样的点,将沿对折后,点恰好落在边上的点,过点,垂足为.证

 

 

 

 

 

 

 

【例3】(浙江嘉兴)如图,直角坐标系中,已知两点,点在第一象限且为正三角形,的外接圆交轴的正半轴于点,过点的圆的切线交轴于点

(1)求两点的坐标;

(2)求直线的函数解析式;

(3)设分别是线段上的两个动点,且平分四边形的周长.

试探究:的最大面积?

【思路点拨】(1)作

(2)连结A C,证CD‖OB.(3)通过

几何图形建立二次函数模型解之,注意

自变量的取值范围。

 

 

 

【例4】(07杭州市) 在直角梯形中,,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点边上从运动时,的函数图象是图3中的线段

(1)分别求出梯形中的长度;

(2)写出图3中两点的坐标;

(3)分别写出点边上和边上运动时,的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。

 

 

 

 

 

 

 

【思路点拨】(1)设动点出发秒后,点到达点且点正好到达点时,由图3知此时△ABC面积为30. (2)结合(1)的结论写出两点的坐标;(3)考虑当点上时及当点上时两种的关于的函数关系式.

 

 

 

 

 

 

【学力训练】

1(07台州市) 如图,四边形是一张放在平面直角坐标系中的矩形纸片,点轴上,点轴上,将边折叠,使点落在边的点处.已知折叠,且

(1)判断是否相似?请说明理由;

(2)求直线轴交点的坐标;

(3)是否存在过点的直线,使直线、直线轴所围成的三角形和直线、直线轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

 

 

 

2、(浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;

(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;

(2)当纸片重叠部分的图形是四边形时,求t的取值范围;

(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由。

 

 

 

 

 

 

3、(江苏盐城)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A

的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.

(1)求直线AB的解析式;

(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;

(3)是否存在点P,使△OPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

4、(四川乐山)在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C,若C的坐标为(0,2),AB=5, A,B两点的横坐标XA,XB是关于X的方程的两根:

(1)求m,n的值;

(2)若∠ACB的平分线所在的直线交x轴于点D,试求直线对应的一次函数的解析式;

(3)过点D任作一直线分别交射线CA,CB(点C除外)于点M,N,则的值是否为定值,若是,求出定值,若不是,请说明理由.