“他山之石可以攻玉”

【编者的话】           

新课改后的中考数学压轴题已从传统的考察知识点多、难度大、复杂程度高的综合题型,逐步转向数形结合、动态几何、动手操作、实验探究等方向发展。这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等。从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等。但纵观全国各省、市的中考数学试题,它的压轴题均是借鉴于上年各地的中考试题演变而来。所以,研究上年各地的中考试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向。只的这样,学生能力得以的培养,解题方法、技巧得以掌握,学生才能顺利地解答未来中考的压轴题。

2008年全国各地中考试题压轴题精选讲座一

几何与函数问题

【知识纵横】

      客观世界中事物总是相互关联、相互制约的。几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。

【典型例题】

【例1】(上海市)已知(如图).是射线上的动点(点与点不重合),是线段的中点.

(1)设的面积为,求关于的函数解析式,并写出函数的定义域;

(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;

(3)联结,交线段于点,如果以为顶点的三角形与相似,求

线段的长.

 

 

 

 

【思路点拨】(1)取中点,联结;(2)先求出 DE; (3)分二种情况讨论。

 

 

 

 

 

【例2】(山东青岛)已知:如图(1),在中,,点出发沿方向向点匀速运动,速度为1cm/s;点出发沿方向向点匀速运动,速度为2cm/s;连接.若设运动的时间为),解答下列问题:

(1)当为何值时,

(2)设的面积为),求之间的函数关系式;

(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;

(4)如图(2),连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

 

 

 

 

 

 

 

 

【思路点拨】(1)设BP为t,则AQ = 2t,证△APQ ∽△ABC;(2)过点P作PH⊥AC于H.

(3)构建方程模型,求t;(4)过点P作PM⊥AC于M,PN⊥BC于N,若四边形PQP ′ C是菱形,那么构建方程模型后,能找到对应t的值。

 

 

 

 

 

 

 

 

 

【例3】(山东德州)如图(1),在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.  

(1)用含x的代数式表示△MNP的面积S;     

(2)当x为何值时,⊙O与直线BC相切?       

(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

 

 

 

 

 

 

       图(1)                     图(2)               图(3)

 

【思路点拨】(1)证△AMN ∽ △ABC;(2)设直线BC与⊙O相切于点D,连结AO,OD,先求出OD(用x的代数式表示),再过M点作MQ⊥BC 于Q,证△BMQ∽△BCA;(3)先找到图形娈化的分界点,=2。然后 分两种情况讨论求的最大值: ① 当0<≤2时, ② 当2<<4时。

 

 

 

 

【学力训练】

1、(山东威海)  如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.

(1)求梯形ABCD的面积; 

(2)求四边形MEFN面积的最大值.

(3)试判断四边形MEFN能否为正方形,若能,

求出正方形MEFN的面积;若不能,请说明理由.  

 

 

 

2、(浙江温州市)如图,在中,分别是边的中点,点从点出发沿方向运动,过点,过点,当点与点重合时,点停止运动.设

(1)求点的距离的长;

(2)求关于的函数关系式(不要求写出自变量的取值范围);

(3)是否存在点,使为等腰三角形?若存在,

请求出所有满足要求的的值;若不存在,请说明理由.

 

 

3、(湖南郴州)如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..

(1) 求证:ΔBEF ∽ΔCEG.

(2) 当点E在线段BC上运动时,△BEF和

△CEG的周长之间有什么关系?并说明你的理由.

(3)设BE=x,△DEF的面积为 y,请你求

出y和x之间的函数关系式,并求出当x为何

值时,y有最大值,最大值是多少?

 

 

4、(浙江台州)如图,在矩形中,,点是边上的动点(点不与点,点重合),过点作直线,交边于点,再把沿着动直线对折,点的对应点是点,设的长度为与矩形重叠部分的面积为

(1)求的度数;

(2)当取何值时,点落在矩形边上?

(3)①求之间的函数关系式;

②当取何值时,重叠部分的面积等于矩形面积的

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网