题号
1
2
3
4
5
6
7
8
9
10
答案
班级 姓名 考号 成绩
一、选择题(共10小题,每小题6分)
1. 设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若且,则点的轨迹方程是
A. B.
C. D.
2. 已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是
A.2 B. 6 C.4 D.12
3. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为
A. B. C. D.
4. 已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于
A. B. C. D.
5. 椭圆的中心为点,它的一个焦点为,相应于焦点的准线方程为,则这个椭圆的方程是
A. B.
C. D.
6. 设是右焦点为的椭圆上三个不同的点,则“成等差数列”是“”的
A.充要条件 B.必要不充分条件
C.充分不必要条件 D.既非充分也非必要
7.椭圆=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的
A.7倍 B.5倍 C.4倍 D.3倍
8. 设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为
等腰直角三角形,则椭圆的离心率是
A. B. C. D.
9. 设直线关于原点对称的直线为,若与椭圆的交点为A、B、,点为椭圆上的动点,则使的面积为的点的个数为
A.1 B.
10. 若焦点在轴上的椭圆的离心率为,则m=
A. B. C. D.
二、填空题(共4小题,每小题6分)
11. 已知椭圆中心在原点,一个焦点为F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .
12. 如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则 35 .
13. 设P是椭圆短轴的一个端点,为椭圆上的一个动点,求的最大值 .
14. 如图8―1,F1、F2分别为椭圆=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是_____.
三、解答题(解答应写出文字说明,证明过程或演算步骤,本题16分)
15. 椭圆的两个焦点F1、F2,点P在椭圆C上,且P F1⊥PF2,,| P F1|=,,| P F2|=.
(I)求椭圆C的方程;
(II)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。