第9讲 不等式(组)与方程(组)的应用
【例题经典】
例1 (2006年内江市)内江市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成.从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成.如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元.
(1)甲、乙两公司单独完成这项工程各需多少天?
(2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天?
【点评】(1)利用方程组解决;(2)利用不等式解决,结合实际取值.
例2 (2005年潍坊市)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共在多少个交通路口安排值勤?
【分析】本题与学生生活实际联系紧密,是一道很好的列不等式组应用题,解决本题应注意路口人数与总人数之间的关系.
例3 华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活.现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费.经核算,参加两家旅行社费用正好相等.
(1)该校参加科技夏令营的学生共有多少人?
(2)如果又增加了部分学生,学校应选择哪家旅行社?
【点评】方程与不等式的综合应用,注意取值与实际生活要相符
【基础训练】
1.(2006年深圳市)九年级的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数( )
A.至多6人 B.至少6人 C.至多5人 D.至少5人
2.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )
A.4辆 B.5辆 C.6辆 D.7辆
3.(2005年内江市)在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给4个答案,其中只有一个答案正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应选对题( )
A.18道 B.19道 C.20道 D.21道
4.一种灭虫药粉30千克,含药率15%,现要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%而小于35%,则所用药粉的含药率x的范围是( )
A.15%<x<23% B.15%<x<35% C.23%<x<47% D.23%<x<50%
5.(2005年吉林省)某林场原计划在一定期限内固沙造林240公顷,实际每天固沙造林的面积比原计划多4公顷,结果提前5天完成任务,设原计划每天固沙造林x公顷,根据题意下列方程正确的是( )
6.(2006年内江市)某学校要印刷一批完全材料,甲印务公司提出制版费900元,另外每份材料收印刷费0.5元;乙印务公司提出不收制版费,每份材料收印刷费0.8元.
(1)分别写出两家印务公司的收费y(元)与印刷材料的份数x(份)之间的函数关系式.
(2)若学校预计要印刷5000份以内的宣传材料,请问学校应选择哪一家印务公司更合算?
7.水是人类最宝贵的资源之一,我国水资源人均占有量远远低于世界平均水平,为了节约用水,保护环境,学校于本学期初制定了详细的用水计划.如果实际每天比计划多用一吨水,那么本学期的用水总量将会超过2300吨;如果实际每天计划节约一吨水,那么本学期用水量将会不足2100吨.如果本学期的在校时间按110天(22周)计算,那么学校计划每天用水量是在什么范围?(结果保留四个有效数字)
8.某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的进价和标价各是多少元?
9.(2006年江阴市)某公司开发的960件新产品,需加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品.在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.
(1)甲、乙两个工厂每天各能加工多少件新产品?
(2)该公司要选择省时又省钱的工厂加工,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,才可满足公司要求,有望加工这批产品.
10.(2006年扬州市)“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.某荷藕加工企业已收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加工0.5吨,每吨可获利5000元.由于受设备条件的限制,两种加工方式不能同时进行.
(1)设精加工的吨数为x吨,则粗加工的吨数为______吨,加工这批荷藕需要____天,可获利______元(用含x的代数式表示)
(2)为了保鲜需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕,精加工的吨数x在什么范围内时,该企业加工这批荷藕的获利不低于80000元?
11.(2005年河南省)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲
乙
价格(万元/台)
7
5
每台日产量(个)
100
60
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?
12.(2005年贵州省)为迎接“2005.中国贵州黄果树瀑布节”,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花奔搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需要花奔情况如下表所示:
造型
甲
乙
A
90盆
30盆
B
40盆
100盆
(1)符合题意的搭配方案有哪几种?
(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用(1)中哪种方案成本最低?
13.(2006年长沙市)我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏室,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.
(1)请填写下表,并求出yA、yB与x之间的函数关系式:
C
D
总计
A
x吨
200吨
B
300吨
总计
240吨
260吨
500吨
(2)试讨论A、B两村中,哪个村的运费较少;
(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
答案:
例题经典
例1:(1)甲独做20天,乙独做30天
(2)设甲做了x天,乙做了y天完成作业,
解y≥15,即乙公司最少应施工15天.
例2:学校派出158名,共有20个交通路口安排值勤
例3:(1)学生共有21人 (2)应选青春社
考点精练
1.B 2.C 3.B 4.C 5.B
6.(1)
(2)y甲<y乙,∴900+0.5x<0.8x,解得x>3000,
∴选甲公司
7.应控制在:19.91到20.09吨之间
8.甲进价为50元,标价70元,乙进价为100元,标价140元
9.解:(1)设甲工厂每天加工x件,则乙公司每天加工(x+8)件
由题意得:,解之得:x1=-24,x2=16.
经检验,x1、x2均为所列方程的根,但x1=-24不合题意,舍去.
此时x+8=24.
答:甲工厂每天加工16件,乙工厂每天加工24件.
(2)由(1)可知加工960件产品,甲工厂要60天,乙工厂要40天.
所以甲工厂的加工总费用为60×(800+50)=51000(元).
设乙工厂报价为每天m元,则乙工厂的加工总费用为40×(m+50)元.
由题意得:40×(m+50)≤51000,解得m≤1225.
答:乙工厂所报加工费每天最多为1225元,可满足公司要求,有望加工这批产品.
10.(1)(60-x)吨,()天,[5000x+(60-x)×1000]元
(2)5(吨)≤x≤12(吨)
11.(1)有3种方案:①甲0台,乙6台,②甲1台,乙5台,③甲2台,乙4台
(2)应选方案②
12.(1)
A
30
31
32
B
20
19
18
(2)设费用为y=1000x+1200(50-x)=-200x+60000,∴A32天,B18个费用最低.
13. (1)
C
D
总计
A
x吨
(200-x)吨
200吨
B
(240-x)吨
(60+x)吨
300吨
总计
240吨
260吨
500吨
yA=-5x+5000(0≤x≤2000),yB=3x+4680(0≤x≤200).
(2)当yA=yB时,-5x+5000=3x+4680,x=40;
当yA>yB时,-5x+5000>3x+4680,x<40;
当yA<yB时,-5x+5000<3x+4689,x>40,
∴当x=40时,yA=yB即两村运费相等;
当0≤x<40时,yA>yB即B村运费较少;
当40<x≤200时,yA<yB即A村费用较小.
(3)由yB≤4830,3x+4680≤4830,∴x≤50,
设两村运费之和为y,∴y=yA+yB,即:y=-2x+9680.
又∵0≤x≤50时,y随x增大而减小.
∴当x=50时,y有最小值,y最小值=9580(元).
答:当A村调往C仓库的柑桔重量为50吨,调往D仓库为150吨,B村调往C仓库为190吨,调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.