初三数学复习教学案
【回顾与思考】
【例题经典】
掌握一元一次方程的解法步骤
例1 解方程:x-
【点评】按去分母、去括号、移项、合并同类项、系数化为1,五步进行
掌握二元一次方程组的解法
例2 (2006年枣庄市)已知方程组的解为,求
【点评】将代入原方程组后利用加减法解关于a,b的方程组.
一次方程的应用
例3 (2006年吉林省)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市,一般缺水城市和严重缺水城市,其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市是严重缺水城市数的2倍,求严重缺水城市有多少座?
【点评】一元一次方程或二元一次方程组都可解答此题.
【基础训练】
1.若代数式
2.如果2005-200.5=x-20.05,那么x等于( )
A.1814.55 B.
3.(2006年盐城市)已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是( )
A.1 B.
4.(2006年青岛市)某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降低多少元,商店老板才能出售( )
A.80元 B.100元 C.120元 D.160元
5.若方程组,那么a,b的值是( )
A.a=2,b=1 B.a=1,b=
6.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( )
A.4场 B.5场 C.6场 D.13场
7.(2006年随州市)“鸡兔同笼”是我国民间流传的诗歌形式的数学题,“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x只,兔为y只,所列方程组正确的是( )
A.
8.(2006年重庆市)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图像可得,关于的二元一次方程组的解是( )
A.
9.把一张面值50元的人民币换成10元、5元的人民币,共有_____种换法.
【能力提升】
10.解方程:
(1)
11.解方程:
(1)(2006年重庆市);(2)(2005年朝阳区)
12.(2006年泰州市)扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示.如果长方体盒子的长比宽多
13.(2006年重庆市)农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高,已知Ⅰ号稻谷国家的收购价是1.6元/千克.
(1)当Ⅱ号稻谷的国家收购价是多少时,在田间管理、土质和面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷的收益相同?
(2)去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?
14.某酒店客房部有三人间,双人间客房,收费数据如下表:
普通(元/间/天)
豪华(元/间/天)
三人间
150
300
双人间
140
400
为吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
【应用与探索】
15.(2005年岳阳市)某体育彩票经售商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A,B,C三种不同价格的彩费,进价分别是A种彩票每张1.5元,B种彩票每张2元,C种彩票每张2.5元.
(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;
(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?
(3)若经销商准备用45000元同时购进A,B,C三种彩票20扎,请你设计进票方案.
答案:
例题经典
例1:x=1 例2:
考点精练
1.B 2.B 3.A 4.C 5.B 6.B 7.B 8.C
9.六种 10.(1) (2)x=5
11.(1)
=2(元)
(2)设卖给国家的Ⅰ号稻谷x千克,则x(1-20%)×2.2=1.6x+1040,解得x=6500,
所以x+(1-20%)x=1.8x=11700(千克),答:略
14.三人间8间,两人间13间
15.解:可设经销商从体彩中心购进A种彩票x张,B种彩票y张,C种彩票z张,
则可分以下三种情况考虑:
(1)只购进A种彩票和B种彩票,依题意可列方程组
解得x<0,所以无解.只购进A种彩票和C种彩票,
依题意可列方程组,
只购进B种彩票和C种彩票,依题可列方程组,综上所述,若经销商同时购进不同型号的彩票,共有两种方案可行,即A种彩票5扎,C种彩票15扎或B种彩票与C种彩票各10扎.
(2)若购进A种彩票5扎,C种彩票15扎,销售完后获手续费为0.2×5000+0.5×15000=8500(元);若购进B种彩票与C种彩票各10扎,销售完后获手续费为0.3×10000+0.5×10000=8000(元),∴为使销售完时获得手续费最多,选择的进票方案为A种彩票5扎,C种彩票15扎.
(3)若经销商准备用45000元同时购进A,B,C三种彩票20扎.设购进A种彩票x扎,B种彩票y扎,C种彩票z扎,
则
∴1≤x<5,
又∵x为正整数,共有4种进票方案,即A种1扎,B种8扎,C种11扎,或A种2扎,B种6扎,C种12扎,或A种3扎,B种4扎,C种13扎,或A种4扎,B种2扎,C种14扎.