绝密★启用前
2005年普通高等学校招生全国统一考试(北京卷)
数学(理工农医类)
YCY
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.
第I卷(选择题 共40分)
注意事项:
1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡
皮擦干净后,再选涂其它答案标号.不能答在试题卷上.
一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选择出符合题目要求的一项.
2.“”是“直线相互垂直”的 ( )
A.充分必要条件 B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
3.| a |=1,| b |=2,c = a + b,且c⊥a,则向量a与b的夹角为 ( )
A.30° B.60° C.120° D.150°
4.从原点向圆作两条切线,则该圆夹在两条切线间的劣弧长为( )
A.π B.2π C.4π D.6π
5.对任意的锐角,下列不等关系中正确的是 ( )
A. B.
C. D.
6.在正四面体P―ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是 ( )
A.BC//平面PDF B.DF⊥PAE
C.平面PDF⊥平面ABC D.平面PAE⊥平面ABC
7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( )
A. B. C. D.
8.函数 ( )
A.在上递减
B.在上递减
C.在上递减
D.在上递减
第Ⅱ卷(共110分)
注意事项:
1.用钢笔或圆珠笔将答案直接写在试卷上.
2.答卷前将密封线内的项目填写清楚.
二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.
9.若为纯虚数,则实数a的值为 .
10.已知的值为 ,的值为 .
11.的展开式中的常数项是 . (用数字作答)
12.过原点作曲线的切线,则切点的坐标为 ,切线的斜率为 .
13.对于函数定义域中任意的,有如下结论:
①; ②;
③ ④
当时,上述结论中正确结论的序号是 .
14.已知n次式项式.
如果在一种算法中,计算的值需要k-1次乘法,计算P3(x0)的值共需要9次运算(6次乘法,3次加法),那么计算P10(x0)的值共需要
次运算.
下面给出一种减少运算次数的算法:P0(x)=a0,Pk+1(x)=xPk(x)+ak+1(k=0,1,2,…,n-1).利用该算法,计算P3(x0)的值共需要6次运算,计算P10(x0)的值共需要
次运算.
三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.
15.(本小题共13分)
已知函数
(Ⅰ)求的单调减区间;
(Ⅱ)若在区间[-2,2].上的最大值为20,求它在该区间上的最小值.
16.(本小题共14分)
如图,在直四棱柱ABCD―A1B1C1D1中,AB=AD=2,DC=,
AC⊥BD,垂足为E.
(Ⅰ)求证BD⊥A1C;
(Ⅱ)求二面角A1―BD―C1的大小;
17.(本小题共13分)
甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为
(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ;
(Ⅱ)求乙至多击中目标2次的概率;
(Ⅲ)求甲恰好比乙多击中目标2次的概率.
18.(本小题共14分)
如图,直线l1:与直线l2:之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2.
(Ⅰ)分别用不等式组表示W1和W2;
(Ⅱ)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;
(Ⅲ)设不过原点O的直线l与(Ⅱ)中的曲线C相交于M1,M2两点,且与l1,l2分别
交于M3,M4两点. 求证△OM1M2的重心与△OM3M4的重心重合.
19.(本小题共12分)
设数列
记
(Ⅰ)求a2,a3;
(Ⅱ)判断数列是否为等比数列,并证明你的结论;
(Ⅲ)求
20.(本小题共14分)
设是定义在[0,1]上的函数,若存在上单调递增,在[x*,1]上单调递减,则称为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.
对任意的[0,1]上的单峰函数,下面研究缩短其含峰区间长度的方法.
(Ⅰ)证明:对任意的为含峰区间;
若为含峰区间;
(Ⅱ)对给定的r(0<r<0.5),证明:存在,使得由(Ⅰ)所确定的含峰区间的长度不大于0.5+r;
(Ⅲ)选取,由(Ⅰ)可确定含峰区间为(0,)或(,1),在所得的含峰区间内选取类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝地值不小于0.02,且使得新的含峰区间的长度缩短到0.34.
(区间长度等于区间的右端点与左端点之差)
一、选择题(本大题共8小题,每小题5分,共40分)
1―5:CBCBD 6―10:DCAA
二、填空题(本大题共6小题,每小题5分,共30分)
9. 10. 11.15 12.(1,e) e 13.②③ 14.
三、解答题(本大题共6小题,共80分)
15.(共13分)
解:(I) 令,解得
所以函数的单调递减区间为
(II)因为
所以
因为在(-1,3)上,所以在[-1,2]上单调递增,又由于在
[-2,-1]上单调递减,因此和分别是在区间[-2,2]上的最大值和
最小值.
于是有,解得
故 因此
即函数在区间[-2,2]上的最小值为-7.
解法一:
(Ⅰ)在直四棱柱ABCD―A1B1C1D1中,
∵A1A⊥底面ABCD,
∴AC是A1C在平面ABCD上的射影,
∵BD⊥AC, ∴BD⊥A1C.
(Ⅱ)连结A1E,C1E,A1C1.
与(Ⅰ)同理可证BD⊥A1E,BD⊥C1E,
∴∠A1EC1二面角A1―BD―C1的平面角.
∵AD⊥DC, ∴∠A1D1C1=∠ADC=90°,
又A1D1=AD=2,D1C1=DC=2, AA1=,且AC⊥BD,
∴A1C1=4,AE=1,EC=3, ∴A1E=2,C1E=2,
在△A1EC1中,A1C12=A1E2+C1E2, ∴∠A1EC1=90°,
即二面角A1―BD―C1的大小为90°.
(Ⅲ)过B作BF//AD交AC于F,连结FC1,
则∠C1BF就是AD与BC1所成的角.
∵AB=AD=2,BD⊥AC,AE=1, ∴BF=2,EF=1,FC=2,BC=DC,
∴FC1=. 在△BFC1中,
∴
即异面直线AD与BC1所成角的大小为.
解法二:
(Ⅰ)同解法一.
(Ⅱ)如图,以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.
与(Ⅰ)同理可证,BD⊥A1E,BD⊥C1E,
∴∠A1EC1为二面角A1―BD―C1的平面角.
(Ⅲ)如图,由D(0,0,0),A(2,0,0),C1(0,,,),B(3,,0)
∴异面直线AD与BC1所成角的大小为arccos.
解法三:
(II)如图,建立空间直角坐标系,坐标原点为E.
连结A1E,C1E,A1C1.
与(I)同理可证,BD⊥A1E,BD⊥C1E,
∴∠A1EC1为二面角A1―BD―C1的平面角.
由E(0,0,0),A1(0,-1,
.
(Ⅲ)如图,由A(0,-1,0),D(,0,0),B(,0,0),C1(0,3,).
得.
∵
∴
∴异面直线AD与BC1所成角的大小为arccos.
17.(共13分)
解:(Ⅰ)
ξ的概率分布如下表:
ξ
0
1
2
3
P
Eξ=0?+1?+2?+3?=1.5 (或Eξ=3?)
(Ⅱ)乙至多击中目标2次的概率为
(Ⅲ)设甲恰比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B1,甲恰击中目标3次且乙恰击中目标1次为事件B2,则A=B1+B2,B1、B2为互斥事件.
P(A)=P(B1)+P(B2)=
所以,甲恰好比乙多击中目标2次的概率为
18.(共14分)
解:(I)
(II)直线由题意得
(III)当直线l与x轴垂直时,可设直线l的方程为. 由于直线l,曲线C关于x轴对称,且l1与l2关于x轴对称,于是M1M2,M3M4的中点坐标都为(a,0),所以△OM1M2,△OM3M4的重心坐标都为,即它们的重心重合.
当直线l与x轴不垂直时,设直线l的方程为
由
由直线l与曲线C有两个不同交点,可知
于是△OM1M2的重心与△OM3M4的重心也重合.
19.(共12分)
解:(Ⅰ)
(Ⅱ)因为
所以
猜想:是公比为的等比数列.
证明如下: 因为
所以是首项为的等比数列.
(Ⅲ)
20.(共14分)
(Ⅰ)证明:设的峰点,则由单峰函数定义可知,上单调递增,
在上单调递减.
当,
这与是含峰区间.
当
这与是含峰区间.
(II)证明:由(I)的结论可知:
当f(x1)≥f(x2)时,含峰区间的长度为l1=x2;
当f(x1)≤f(x2)时,含峰区间的长度为l2=1-x1;
对于上述两种情况,由题意得
① 由①得1+x2-x1≤1+2r,即x2-x1≤2r.
又因为x2-x1≥2r,所以x2-x1=2r,所以 x2-x1=2r. ②
将②代入①得 x1≤0.5-r, x2≥0.5+r. ③
由①和③解得x1=0.5-r, x2=0.5+r.
所以这时含峰区间的长度l1=l2=0.5+r,即存在x1 , x2使得所确定的含峰区间的长度不大于0.5+r.
(Ⅲ)解:对先选择的x1, x2, x1 <x2, 由(II)可知 x1+x2=1, ④
在第一次确定的含峰区间为(0,x2)的情况下,x3的取值应满足 x3+x1=x2 , ⑤
由④与⑤可得 当x1>x3时,含峰区间的长度为x1.
由条件x1-x3≥0.02, 得x1-(1-2x1) ≥0.02, 从而x1≥0.34.
因此,为了将含峰区间的长度缩短到0.34,只要取
x1=0.34, x2=0.66, x3=0.32.