2009届高考数学压轴题预测
专题七 应用性问题
1. 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).
(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);
(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?
分析:本题命题意图是考查函数、不等式的解法等基础知识,考查运用数学知识分析解决问题的能力。
解析(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 ,,,.则2006年全球太阳电池的年生产量为 (兆瓦).
(2)设太阳电池的年安装量的平均增长率为,则.解得.因此,这四年中太阳电池的年安装量的平均增长率至少应达到.
点评:审清题意,理顺题目中各种量的关系是解决本题的关键。
2. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.(Ⅰ)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;(Ⅱ)当每件产品的售价为多少元时,该分公司一年的利润最大,并求出的最大值.
分析:本题命题意图是考查函数的解析式的求法、利用导数求最值、导数的应用等知识,考查运用数学知识分析和解决实际问题的能力.
解析:(Ⅰ)分公司一年的利润(万元)与售价的函数关系式为: .
(Ⅱ),令得或(不合题意,舍去).
,. 在两侧的值由正变负.
所以(1)当即时,
.
(2)当即时,
,
所以
答:若,则当每件售价为9元时,分公司一年的利润最大,最大值(万元);若,则当每件售价为元时,分公司一年的利润最大,最大值(万元).
点评:准确进行导数运算,掌握运用导数判断函数单调性及求函数极值、最值的方法是解决此题的关键。
3. (07安徽文理)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1+r)a-1,第二年所交纳的储备金就变为a2(1+r)a-2,……,以Tn表示到第n年末所累计的储备金总额.
(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;
(Ⅱ)求证:Tn=An+Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
分析:本小题命题意图主要考查等差数列、等比数列的基本概念和基本方法,考查学生的阅读资料、提取信息、建立数学模型的能力,考查应用所学的知识分析和解决实际问题的能力。
解析:(1)我们有()
(2),对反复使用上述关系式,得:
。①
在①式两边同乘以,得:
②
由②-①,得
,即 。
如果记,,则,其中是以为首项,以为公比的等比数列;是以为首项,以为公差的等差数列。
点评:掌握等差数列、等比数列的概念、通项公式、以及求和方法是解决此题的关键。
4. 如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A1处时,乙船航行到甲船的北偏西120°方向的B1处,此时两船相距10海里,问乙船每小时航行多少海里?(07山东理)
分析:本题命题意图是通过实际问题考查了正弦定理、余弦定理、解三角形的能力以及分析解决问题的能力。
解析:如图,连结,,, 是等边三角形,,在中,由余弦定理得
,
,因此乙船的速度的大小为
答:乙船每小时航行海里.
点评:连接,构造两个可解的三角形与是处理此题的关键,此外,还可连接来解。
5. 某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结
果为A级的概率如表一所示,分别求生产
出的甲、乙产品为一等品的概率P甲、P乙;
(Ⅱ)已知一件产品的利润如表二所示,用ξ、
η分别表示一件甲、乙产品的利润,在
(I)的条件下,求ξ、η的分布列及
Eξ、Eη;
(Ⅲ)已知生产一件产品需用的工人数和资金额
如表三所示.该工厂有工人40名,可用资.